Use of CESM to quantify aerosol forcing from the Eyjafjallajökull volcanic eruptions

M. Flanner¹, A. Gardner², S. Eckhardt³, A. Stohl³, and J. Perket¹

¹ University of Michigan, Ann Arbor MI ² Jet Propulsion Laboratory, Pasadena CA ³ Norwegian Institute for Air Research (NILU), Kjeller Norway

Material from Flanner et al (2014), JGR, doi:1002/2014JD021977

Eyjafjallajökull eruption

MODIS, NASA Earth Observatory Image of the Day

- Two eruption episodes in April and May 2010
- Disruption of air traffic. Small but unique impact on climate.

Flanner, Gardner, Eckhardt, Stohl, Perket Eyjafjallajökull Volcanic Aerosol Forcing in CESM

Aerosol climate impacts

- Atmospheric ash forcing:
 - longwave: +
 - shortwave: ?
- Atmospheric sulfate forcing:
 - $\bullet~$ longwave: +
 - shortwave: -
- Deposition of ash to snow and sea-ice:
 - shortwave: +
- Insulation of snow: –
- Aerosol-cloud indirect effects:
 - shortwave: (?)
 - longwave: + (?)

Figure: 10 cm thick ash layer overlying snow in September 2010. Courtesy of Steve Warren.

Intro Methods Optical Properties

Ash emissions (*Stohl et al.*, 2011)

- Total injected tephra mass:
 - $8.3\pm4.2\,\text{Tg}$ as "fine" ash $(2.8-28\,\mu\text{m}$ diameter)
 - $\sim 12\,\text{Tg}$ in $2.5-250\,\mu\text{m}$ size range
- Global annual black carbon emissions: \sim 8 Tg

SO_2 emissions

• Estimates derived from OMI, SCIAMACHY, GOME-2, and ground radar (*Flemming and Inness*, 2013):

- Total SO₂ emissions: 0.25 (0.13 − 0.43) Tg, also from *Heard et al.* (2012)
- $\bullet~Only\sim 3\%~of~SO_2$ emissions occurred during April event (not shown)
- Very little injection of SO₂ into stratosphere

Aerosol radiative forcing calculations

- CAM, CICE, and CLM employed in different capacities
- Modified CAM4 to accommodate 4 ash tracers and volcanic SO_2/SO_4 tracers with new optical properties
- Vertically-resolved daily SO₂ emission fluxes from *Flemming and Inness*, (2013), oxidation to SO₄ simulated with CAM4-BAM with prescribed 2010 SSTs/sea-ice
- Daily 3-D ash fields from *Stohl et al.* (2011), 25 size bins, re-partitioned into 4 size bins, prescribed in CAM
- \bullet Atmospheric RF calculations using RRTMG with prescribed ash and SO_4 fields in CAM
- Added 4 ash particle species to CLM/SNICAR and CICE/Delta-Eddington (pre-existing: 2 BC species, 4 dust).
 - Particle size ranges partitioned to have roughly equal surface area
 - $r < 0.56 \,\mu\text{m}, \, 0.56 < r < 1.0 \,\mu\text{m}, \, 1.0 < r < 2.5 \,\mu\text{m}, \, r > 2.5 \,\mu\text{m}$
- Daily ash deposition fluxes from *Stohl et al*, (2011) prescribed in CLM4 and CICE4 simulations with 2010 forcing data

Atmospheric ash (Stohl et al., 2011)

- Ash transport, wet+dry deposition simulated with the Lagrangian transport model FLEXPART, met fields from ECMWF and NCEP
- Forward dispersion modeling and satellite observations combined with inversion scheme to determine time-resolved ash emissions

Ash optical properties

- Uncertainty in imaginary component of ash refractive index drives large uncertainty in forcing
- Low, central, and high absorptivity estimates derived from aircraft/PSAP measurements, sun photometer inversions, Lidar inversions, and measurements of previous events

 Mie optical properties weighted into RRTMG SW and LW spectral bands, and provided as supplementary data

Optical properties

• Ash particles are often highly non-spherical

Figure: Schumann et al (2011), ACP

• Properties for equal-mass non-spherical particles simulated with T-Matrix code [*Mishchenko and Travis*, 1998]. MAC of Chebyshev particles, oblate/prolate spheroids, spheres differ by **16% at most**

Optical properties

• Variability in ash refractive index in longwave spectrum:

Sulfate optical properties derived for three size distributions:
r_e = 0.17, 0.27, 0.43 μm (Rasch et al., 2008; O'Dowd et al., 2011)

Aerosol forcing components: Daily animations

Intro Methods Optical Properties

Results

Aerosol forcing components: 2-month means

Flanner, Gardner, Eckhardt, Stohl, Perket Eyjafjallajökull Volcanic Aerosol Forcing in CESM

Aerosol forcing components: Timeseries of global means

- Atmospheric ash SW forcing is noisy because of variable plume/cloud/cryosphere co-location and short residence time
- Ash LW forcing is substantial because particles are large
- Ash-in-snow forcing persists for months
- Negative SW forcing from sulfate dominates (in May)

Aerosol forcing components: Means

Table: Global annual-mean radiative forcings $[mW m^{-2}]$

Instantaneous top-of-atmosphere forcings									
	Ash	Ash	Ash in	Ash in	Sulfate	Sulfate	Net	Net	
	SW	LW	snow	sea-ice	SW	LW		Effective	
Variable optical properties, central emissions									
Low	-4.1	0.7	0.0	0.0	-4.1	0.2	-7.3	-7.2	
Central	-0.3	1.1	0.8	0.1	-3.8	0.2	-1.9	-0.5	
High	+2.7	1.2	1.3	0.2	-3.0	0.2	+2.8	+4.9	
Variable emissions, central optical properties									
Low	-0.1	0.5	0.4	0.1	-6.1	0.4	-4.9	-4.3	
Central	-0.3	1.1	0.8	0.1	-3.8	0.2	-1.9	-0.5	
High	-0.6	2.1	1.5	0.3	-2.1	0.1	+1.2	+4.5	

- Central estimates yield weakly negative forcing
- High ash absorption assumption produces positive net forcing
- Forcing sign of atmospheric ash component is uncertain
- $\bullet\,$ Uncertainty in emissions of ash and SO_2 are both $\sim 2\times$

Uncertainty due to clouds

• Cloud variability in different ensemble members drives large variation in atmsopheric ash SW forcing, but has little impact on the other forcing terms

Table: Global annual-mean instantaneous top-of-atmosphere radiative forcings from different ensemble members $[\rm mW\,m^{-2}]$

Ensemble	Ash	Ash	Sulfate	Sulfate
Member	SW	LW	SW	LW
E1	-0.29	1.06	-3.83	0.24
E2	-0.59	1.07	-3.73	0.24
E3	-0.45	1.03	-3.56	0.22
E4	-0.20	1.07	-3.62	0.22
E5	-0.28	1.05	-3.57	0.22
Mean	-0.36	1.06	-3.66	0.23

Conclusions

- CESM is a useful tool for calculating RF of various volcanic aerosol components
- Net aerosol forcing from Eyjafjallajökull was nearly climate neutral. marking an unusual volcanic event in present climate
 - Negative sulfate forcing slightly exceeded positive ash forcing
 - Ash-in-snow forcing persisted longer than atmospheric forcing, but operated over a smaller spatial domain
 - Ash longwave forcing is non-negligible
- Ash absorptivity and emissions are largest sources of uncertainty. Ash/cloud covariance is large source of uncertainty for atmospheric ash SW forcing
- Beyond RF: Did large positive forcing over Arctic and Greenland enhance summer melt in 2010?
- Did latitudinal gradient in forcing alter atmospheric dynamics in a meaningful way (e.g., weakened westerlies)?