

Climate and Cryosphere

Understanding the changing cryosphere and its climate connections

CMIP6 planning – SIMIP (diagnostic sea ice variables)

Alexandra Jahn (CU Boulder) & Dirk Notz (MPI Hamburg)

Max-Planck-Institut für Meteorologie

CMIP6 Plans

WCRP Grand Challenges: (1) Clouds, circulation and climate sensitivity, (2) Changes in cryosphere, (3) Climate extremes, (4) Regional climate information, (5) Regional sea-level rise, and (6) Water availability, plus an additional theme on "Biogeochemical forcings and feedbacks"

Note: The themes in the outer circle of the figure might be slightly revised at the end of the MIP endorsement process

DECK (entry card for CMIP)

- i. AMIP simulation (~1979-2014)
- ii. Pre-industrial control simulation
- iii. 1%/yr CO₂ increase
- iv. Abrupt 4xCO₂ run

CMIP6 Historical Simulation (entry card for CMIP6)

v. Historical simulation using CMIP6 forcings (1850-2014)

(DECK & CMIP6 Historical Simulation to be run for each model configuration used in the subsequent CMIP6-Endorsed MIPs)

With proto-DECK experiments (LMIP,OMIP etc.) in CMIP6 Tier1

Note: The themes in the outer circle of the figure might be slightly revised at the end of the MIP endorsement process

Overview of MIPs that have applied for CMIP6 Endorsement

Applications follow the template available on the CMIP panel website at <u>http://www.wcrp-</u> <u>climate.org/index.php/wgcm-cmip/about-cmip</u>

Date: 2 December 2014

Please send any feedback to these applications to the CMIP panel chair (<u>Veronika.Eyring@dlr.de</u>) or directly contact the individual co-chairs for questions on specific MIPs

	Short Name of MIP	Long Name of MIP					
1	AerChemMIP	Aerosols and Chemistry Model Intercomparison Project					
2	C4MIP	Coupled Climate Carbon Cycle Model Intercomparison Project					
3	CFMIP	Cloud Feedback Model Intercomparison Project					
4	DAMIP	Detection and Attribution Model Intercomparison Project					
5	DCPP	Decadal Climate Prediction Project					
6	ENSOMIP	ENSO Model Intercomparison Project					
7	FAFMIP	Flux-Anomaly-Forced Model Intercomparison Project					
8	GeoMIP	Geoengineering Model Intercomparison Project					
9	GMMIP	Global Monsoons Model Intercomparison Project					
10	HighResMIP	High Resolution Model Intercomparison Project					
11	ISMIP6	Ice Sheet Model Intercomparison Project for CMIP6					
12	LS3MIP	Land Surface, Snow and Soil Moisture					
13	LUMIP	Land-Use Model Intercomparison Project					
14	OCMIP6	Ocean Carbon Cycle Model Intercomparison Project, Phase 6					
15	OMIP	Ocean Model Intercomparison Project					
16	PDRMIP	Precipitation Driver and Response Model Intercomparison Project					
17	PMIP	Palaeoclimate Modelling Intercomparison Project					
18	RFMIP	Radiative Forcing Model Intercomparison Project					
19	ScenarioMIP	Scenario Model Intercomparison Project					
20	SolarMIP	Solar Model Intercomparison Project					
21	VolMIP	Volcanic Forcings Model Intercomparison Project					
	Diagnostic MIPs (i.e., no proposed experiments rather requesting that certain output is						
	archived and/or contributing to the evaluation and analysis in a coordinated manner)						
22	CORDEX	Coordinated Regional Climate Downscaling Experiment					
23	DynVar	Dynamics and Variability of the Stratosphere-Troposphere System					
24	GDDEX	Global Dynamical Downscaling Experiment					
25	SIMIP	Sea-Ice Model Intercomparison Project					
26	VIAAB	VIA Advisory Board for CMIP6					

CMIP6 MIPs have been proposed and are being reviewed

SIMIP is a diagnostic MIP (no experiments proposed)
→ Requesting sea ice output for all experiments using the sea ice model

Timeline for CMIP6 data request

- Online registration and CMIP5 variables which will be used again returned to WIP co-chairs and CMIP Panel Chair, c/o Martin Juckes (**31 January 2015**) – Complete SIMIP data request submitted January 30th
- Full information except the final experiment list for *CMIP6 Data Request Compilation Template* returned to WIP co-chairs and CMIP Panel Chair, c/ o Martin Juckes (28 February 2015)
- Synthesized responses (i.e., 1st Draft of *CMIP6 Data Request*) sent to MIP co-chairs with request for additional information that can be aligned only after the final experiment list is received (**15 April 2015**)
- 1st Draft of *CMIP6 Data Request* reviewed and returned, with additional information as requested (**15 June 2015**)
- Near-final version of *CMIP6 Data Request* published, **31 July 2015**
- Feedback from modelling group on the actual implementation of the *CMIP6 Data Request* returned (**15 October 2015**)
- Final CMIP6 Data Request approved at WGCM meeting (31 October 2015)

SIMIP proposal

- Co-Chairs: Dirk Notz and Alexandra Jahn
- Steering Committee: Marika Holland, Elizabeth Hunke, Francois Massonet, Julienne Stroeve, Bruno Tremblay, Martin Vancoppenolle
 - SIMIP goal: Defines variables that are necessary to understand the sea-ice evolution in any CMIP6 experiment
 - This diagnostic MIP provides a list of clearly defined variables that allow for a near-complete analysis of the evolution of sea ice in any experiment carried out as part of CMIP6.
 - To achieve this aim, we propose a list of those variables required to close the three budgets that govern the evolution of sea ice and its impact on the Earth's climate system. These are the conservation of heat, the momentum balance and tracer conservation. In addition, we provide a list of variables that allow for the high frequency analysis of the sea-ice state itself.

Averaging guidelines

- Temporal averaging for all variables that do directly change with area fraction (i.e. extensive variables such as: volume, mass, area fraction): always average in 0 for all time steps where no sea ice is present
- Temporal averaging for all variables that do not directly change with area fraction (i.e. intensive variables such as: temperature, albedo, speed, stress, fluxes...): All time samples are first multiplied by area fraction, then summed, and then divided by the sum of the area fractions. This will automatically result in missing values for continuously ice-free conditions (division by zero)
- **Spatial fractions** (concentrations) are always relative to full size of the grid cell. Models with multiple surface properties or multiple categories in single grid cell use area-fraction weighted spatial average of ice-covered part of grid cell

Sea ice variable categories

- Sea-ice state variables
- Tendencies of sea-ice mass and area fraction (all negative for decreasing mass)
- Heat and freshwater fluxes (all only for sea-ice fraction of grid cell, downward always positive)
- Sea-ice dynamics
- Integrated measures

Requested daily variables

- 1. Fraction of time steps with sea ice
- 2. Sea-ice area fraction
- 3. Sea-ice thickness (actual floe thickness, not ice volume/grid area as in CMIP5)
- 4. Snow thickness
- 5. Surface temperature of sea ice
- 6. X-component of sea ice velocity
- 7. Y-component of sea ice velocity
- 8. Sea-ice speed

Community input requested on SIMIP CMP6 variable list

- By March 31 2015
- Variable list available under <u>https://www.earthsystemcog.org/doc/list/</u> <u>wipdatarequest/</u>
- Email will be send to PCWG after meeting
- Questions?
- In the future, after list is finalized, PCWG should decide which variables should be saved from CESM

Requested monthly variables

66	-							
67	-							
69	_							
70	_							
71	_							
72 73	-							
74 75	-							
76	-							
77	-							
78	-							
80	-							
81								
82								
83	_							
84								
85	_							
86	_							
87	_							
88								
89	-							
90								
91	-							
93	-							
94 95								
	siacrossline	sea_ice_transport_across_line	1	4 element vector	kg/s	Sea ice mass flux through straits	net (sum of transport in all directions) sea ice mass transport through the following four passages, positive into the Arctic Ocean 1. Fram Strait = (11.5°W,81.3°N to (10.5°E,79.6°N) 2. Canadian Archipelego = (128.2°W,70.6°N) to (59.3°W,82.1°N) 3. Barents opening = (16.8°E,76.5°N) to	2
96							[(19.2∘E,70.2∘N) 4. Bering Strait = (171∘W,66.2∘N) to (166∘W,65∘N)	

		i			i		
6	1. Sea-ice sta	ate variables					
7	sitimefrac	sea_ice_time_fraction -1	sea ice	1	Fraction of time steps with sea ice	Fraction of time steps of the averaging period during which sea ice is present (siconc >0) in a grid cell	1
8	siconc	sea ice area fraction 1	sea ice	1	Sea-ice area fraction	Area fraction of grid cell covered by sea ice	1
9	simass	sea ice mass 1	sea ice	kg / m²	Sea-ice mass per area	Total mass of sea ice divided by grid-cell area	1
10	sithick	sea_ice_thickness 1	sea ice	m	Sea-ice thickness	Actual (floe) thickness of sea ice (NOT volume divided by grid area as was done in CMIP5)	1
11	sivol	sea_ice_volume 1	sea ice	m	Sea-ice volume per area	Total volume of sea ice divided by grid-cell area (this used to be called ice thickness in CMIP5)	1
12	sisnconc	surface_snow_area_fraction 1	sea ice	1	Snow area fraction	Area fraction of grid cell covered by snow that lies on sea ice; exclude snow that lies on land or land ice.	1
13	sisnmass	liquid_water_content_of_surface_snow 1	sea ice	kg / m²	Snow mass per area	Total mass of snow on sea ice divided by grid-cell area	1
14	sisnthick	surface_snow_thickness 1	sea ice	m	Snow thickness	Actual thickness of snow (snow volume divided by snow-covered area)	1
15	siitdconc	sea_ice_area_fraction_over_categories -1	sea ice	1	Sea-ice area fractions in thickness categories	Area fraction of grid cell covered by each ice-thickness category (vector with one entry for each thickness category starting from the thinnest category, netcdf file should use thickness bounds of the categories as third coordinate axis)	3
16	siitdthick	sea_ice_thickness_over_categories -1	sea ice	m	Sea-ice thickness in thickness categories	Actual (floe) thickness of sea ice in each category (NOT volume divided by grid area), (vector with one entry for each thickness category starting from the thinnest category, netcdf file should use thickness bounds of categories as third coordinate axis)	3
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31							
31							
33							

34			
35			
30			
37			
38			
39			
40			
44			
41			
42			
43			
44			
45			
40			
40			
47			
48			
49			
50			
50			
51			

