

CICE5 physics in RASM with implications for CESM

Andrew Roberts - Naval Postgraduate School Anthony Craig - Naval Postgraduate School Elizabeth Hunke - Los Alamos National Laboratory

Wieslaw Maslowski - Naval Postgraduate School
Robert Osinski - Poland Institute of Oceanology
Alice DuVivier - University of Colorado
Mimi Hughes - University of Colorado
John Cassano - University of Colorado
Bart Nijssen - University of Washington
Joe Hamman - University of Washington
Brandon Fisel - Iowa State University
William Gutowski - Iowa State University
Michael Brunke - University of Arizona
Xubin Zeng - University of Arizona
David Bailey - National Center for Atmospheric Research
Marika Holland - National Center for Atmospheric Research

The Regional Arctic System Model Version 1.0

m

The Regional Arctic System Model Version 1.0

Component	Code	Configuration
Atmosphere	WRF3	50km, 40 levels (10 in the lowest 1000 m), 2.5 minute step RRTMG coupled with Morrison microphysics Spectrally nudging T, U, V above 500 hPa to waves 4/3 (x/y)
Land	VIC4	50km, 3 Soil Layers, 20 minute step RVIC runoff flow convolution scheme
Ocean	POP2	1/12°, 45 levels (7 in the top 42 m), 10 timesteps / 20 min coupling KPP parameter space based on improved Bering Sea ice extent
Sea Ice	CICE5	1/12°, 5 thickness categories divided at 0.65, 1.39, 2.47, 4.56, 9.3 m 20 min steps, Delta-Eddington shortwave, level melt ponds, anisotropic mechanics, Bitz-Lipscomb thermodynamics, high- frequency coupling with constant roughness length
Coupler	CPL7	Flux exchange every 20 minutes for all model components 'RASM1' Inertially resolving coupling with minimized model lags

No modeling without service

A new strategy for model inter-comparison is needed that will identify specific, key processes of importance to sea ice prediction; incorporate lessons learned from model sensitivity studies; and collaborate closely with model developers to identify approaches to resolve unrealistic model behavior. Regional models and ice-ocean coupled systems will likely be an essential part of the strategy, given the greater control achieved in these approaches by prescribed (e.g., observationally- or reanalysis-derived) lateral and/or surface forcing of the Arctic.

- Seasonal-to-Decadal Predictions of Arctic Sea Ice: Challenges and Strategies, National Research Council, 2012

The core focus of the proposed ASM program will be to understand complexity and adaptation in the Arctic System as well as society's role and response in the evolution of that system. The program is designed to complement and work with global Earth System Modeling programs to create reliable probabilistic forecasts of the Arctic on seasonal to decadal timescales.

- A Science Plan for Regional Arctic System Modeling: A Report by the Arctic Research Community for the National Science Foundation Office of Polar Programs, 2010

Improvements are possible by tapping into model capabilities that already exist in some cases, through strategic cooperation of the sometimes disparate global and regional modeling streams, as well as increased co-operation of global, regional, research-based, and operational modeling efforts.

- A National Strategy for Advancing Climate Modeling, National Research Council, 2012

CICE5 implementation in RASM and CESM

CICE5 implementation in RASM and CESM

Model	Components	Architecture
RASM	CICE5+POP+WRF+VIC+RVIC+CPL7x ar9v3, ar9v4, wr50a, wr10a	Spirit (AFRL, SGI Ice X, Intel Compiler)
		Lightning (AFRL, Cray XC30, Intel Compiler)
		Garnet (ERDC, Cray XE6, PGI Compiler)
CESM	CICE5+POP+CAM+CLM+RTM+CPL7	Yellowstone (NCAR, IBM, NAG compiler)
		Spirit (AFRL, SGI Ice X, Intel Compiler)
		Lightning (AFRL, Cray XC30, Intel Compiler)
		Garnet (ERDC, Cray XE6, PGI Compiler)

CICE5 implementation in RASM and CESM

m

RASM CICE5 baseline configuration

CICE5 physics	Decadal testing in RASM	RASM 1.0 Default
Melt Ponds	CESM melt ponds	
	Level-ice formulation	\checkmark
	Topographic formulation	
Vertical Thermodynamics	Bitz-Lipscomb	\checkmark
7 ICE layers, T Show layer	Mushy Layer	
Ice Mechanics	Elastic-Viscous-Plastic (EVP)	
	Revised-EVP	
	Elastic Anisotropic Plastic (EAP)	\checkmark
Coupling	RASM High Frequency	\checkmark
mentarresolving	+ Form Drag	-

Inter-comparison of CICE5 Sea Ice Mechanics

cm s⁻¹

Pathfinder

Scaling in sea ice divergence from 2 hourly snapshots

Scaling in sea ice divergence from 2 hourly snapshots

RASM EAP Scaling March 1996

Scaling in sea ice divergence from 2 hourly snapshots

Н	EVP		EAP	
	March	September	March	September
Canada Basin	-0.005	-0.021	-0.006	-0.011
Central Arctic	-0.036	-0.022	-0.034	-0.059

 $|\nabla \cdot \tilde{\mathbf{u}}| \propto \mathbf{L}^{H}$

 \tilde{u} = sea ice velocity, L = length scale

H = 1st moment scaling exponent (observations ≈ -0.20)

Previous results in RASM with thinner sea ice have produced values of H=-0.23, suggesting a role of sea ice thickness in the precise value of H.

m

Internal variability in RASM 1.0: Initial conditions

RASM Geostrophic Surface Wind Streamlines 1989-1999

Internal variability in RASM 1.0: Boundary conditions

A broader look: Behavior in the Land Model

Courtesy of Joe Hamman and Bart Nijssen, University of Washington

Conclusion: RASM 1.0 is frozen except for CICE5 parameter space estimation and physics tests

Conclusion: RASM 1.0 is frozen except for CICE5 parameter space estimation and physics tests

Courtesy of Robert Osinski and Brandon Fisel