Simulation of Polar Ozone Depletion: An Update

D. Kinnison (NCAR), S. Solomon (MIT), and J. Bandoro (MIT) February 17, 2015 WACCM Working Group Meeting, Boulder Co.

Polar Chemical Processes in the Lower Stratosphere

While activation may take place during dark polar winter, substantial ozone losses require that sunlight as well as activated chlorine (and bromine) be present to catalytically destroy ozone.

CALIOP Observations (liquid => solid), Pitts *et al.*, 2009

Antarctic Vortex, 3-year Mean area coverage.

Equilibrium Approach for WACCM....

- Considine *et al.*, JGR, 2000.
 - Settling Velocity
- Kinnison *et al.,* JGR, 2007.
- Empirically, the partitioning of 80% total HNO₃ into STS and 20% into NAT best represents the evolution of HNO₃(g) in WACCM.
- CALIOP measurements show PSCs Fractional area is >60% in early winter (Pitts et al., 2009).
- Wegner et al., JGR, 2013.

Comparison to Aura-MLS Observations

The model shows significantly less scatter than the satellite observation due to the simplification that all PSCs form instantaneously with a prescribed size distribution.

HNO₃ Comparison to Aura MLS observations

PSC Model Development Summary

- We have updated the PSC representation in WACCM using Aura MLS and CALIOP data as constraints (Wegner et al., JGR 2013).
- The model now has a mixed phase of STS and NAT in early winter that is more consistent with CALIOP data.
- The evolution of gas-phase HNO₃ also is in better agreement with Aura MLS.
- We also updated (not shown) the dehydration threshold for polar stratospheric H₂O. We were dehydrating at 80% saturation of water over ICE. We are now dehydrating at 100%.

Examine PSC Assumptions on Ozone Depletion

Scenario	Temperature	PSCS	Comments
No Het	-	NONE	Zeroed halogen het. rates.
Reference	-	ALL TYPES	CCMI Version
2Kbias	-2K applied	ALL TYPES	Only to the Het Module.
3xSAD	-	ALL TYPES	Show the sensitivity to sulfate SAD in polar region only.
REFnat	-	ALL TYPES	2-NAT MODES (0.0001, 5 particles cm ⁻³)
SOLID	-	NAT, ICE	Liquid PSCs reactivity zeroed.
LIQUID#1	T≥195K	LBS	Test Drdla+Muller 2012 result.
LIQUID#2	T≥192K	LBS, ~STS	STS starts to form.
LIQUID#3	-	LBS, STS	

9

TOZ Summary

- In the SH, the REF case underestimates the observed TOZ (OMI) by approximately 25DU.
- In the SH, adding a -2K bias to the heterogeneous module overestimates the depletion.
- In the SH, adding a 3xSAD to the input CCM sulfate SAD (which is consistent with small volcanic eruptions) shows very good agreement with OMI TOZ.
- The model has difficulty representing the observed TOZ in the NH. Only when the -2K bias and 3xSAD is applied does the model come close to the observed decrease. More work is needed to understand this model/observed difference.
- The depletion due to LIQUIDS and SOLIDS is not additive.
 - REF ≠ SOLID only + LIQUID#3

Activation vs Deactivation: 74°S, 61hPa

Activation vs Deactivation: 74°S, 61hPa

 If deactivation into CIONO₂ occurs too early, related chemical indicator is a reduced rate of formation of HCI at later times.

Activation vs Deactivation: 74°S, 61hPa

HCI Rate Change as an Indicator Het. Processing.

HCI Rate Change as an Indicator Het. Processing.

2011 HCI, CIONO2 Tendencies at 32.0 hPa -75 to -65

Summary

- We find that the occurrence of cold temperatures and PSC chemistry at T<192K is <u>essential</u> to produce substantial ozone loss (O3L).
- This conclusion is bolstered by broad agreement of the temporal behavior of computed ozone and related species (HNO₃, H₂O, HCI) compared to Aura MLS.
- The magnitude of the calculated TOZ in both polar regions is sensitive to small differences in temperature and sulfate surface area density (~10-40DU).
 - These sensitivities are important in quantifying ozone recover due to halogens.
- These results confirm earlier studies suggesting that liquid PSCs particles are sufficient to simulation nearly all of the O3L using current model chemistry.
 - However, solid PSCs do play an important role in de-NOY and de-H2O. They also add to the O3L for altitudes >18km.
 - We have shown that the results for O3L from each particle type are not additive.
- We've shown that the rate of change of HCI can be used as a key indicator of ozone depletion chemistry, primarily outside of the vortex core.