

Quantifying Isentropic Stratosphere-Troposphere Exchange (STE) of Ozone

Huang Yang¹, Gang Chen¹, Qi Tang^{2,3}, Peter Hess² and David Plummer⁴

¹ EAS, Cornell University; ² BEE, Cornell University; ³ LLNL; ⁴ CCCma, Environment Canada

Ozone STE

20100528T00:00:00

Lin et al., GFDL

http://www.gfdl.noaa.gov/news-app/story.74/title.springtime-high-surface-ozone-events-overthe-western-united-states-quantifying-the-role-of-stratospheric-intrusions

Impacts of ozone STE

Impacts of ozone STE

Impacts of ozone STE

Impacts of ozone STE Spatially NOT uniform

It is important to quantify the **spatial distribution** of ozone STE

- What does the spatial distribution of ozone STE look like?
- What causes such a spatial distribution of ozone STE?

Lowermost Stratosphere (LMS) STE vs. Isentropic STE

Appenzeller et al., 1996

(a) Budget of lowermost stratosphere

NO spatial distribution

Lowermost Stratosphere (LMS) STE vs. Isentropic STE

Isentropic STE <-> Meridional distribution of STE

Bold – tropopause

Dashed – isentropes

Isentropic STE <-> Meridional distribution of STE

High isentropes <-> Low latitudes

Low isentropes <-> High latitudes

Budget diagnostics: net STE flux unlike Langrangian **Trajectory** diagnostics: one-way STE flux

Models

- WACCM Whole Atmosphere Community Climate Model at NCAR
- CMAM Canadian Middle Atmosphere Model at Environment Canada

Models	Hor. Res.	Vert. Res.	Тор	Duration	Nudging
SD- WACCM	1.5°×2°	88	0.0006Pa	1991-2009	MERRA
SD- CMAM	3.75°×4°	63	0.07Pa	1981-2010	ERA- interim

Tropopauses

- **O3S** stratospheric ozone
- e90 idealized tracer
- WMO lapse rate
- **3PVU –** potential vorticity

The global ozone STE is **410** ~ **450** Tg/yr from stratosphere to troposphere (in both models and for all tropopauses).

The global ozone STE is **410** ~ **450** Tg/yr from stratosphere to troposphere (in both models and for all tropopauses).

Positive – troposphere to stratosphere Negative – stratosphere to troposphere

The global ozone STE is **410 ~ 450 Tg/yr** from stratosphere to troposphere (in both models and for all tropopauses).

Positive – troposphere to stratosphere Negative – stratosphere to troposphere NH - maximum in late spring and early summer SH – much less seasonality, focus on NH hereafter

LMS STE Consistent with previous works

The global ozone STE is **410** ~ **450** Tg/yr from stratosphere to troposphere (in both models and for all tropopauses).

Positive – troposphere to stratosphere Negative – stratosphere to troposphere NH - maximum in late spring and early summer SH – much less seasonality, focus on NH hereafter

Subtropical region (350K-380K):

Summer

Subtropical region (350K-380K): Troposphere-to-stratosphere ozone STE, with maximum in summer.

Core of jet (330K-350K):

Stratosphere-to-troposphere ozone STE, with maximum in summer; Cancel greatly with the subtropical troposphere-to-stratosphere ozone STE.

Poleward edge of jet (310K-330K): Stratosphere-to-troposphere ozone STE, with maximum in spring; Largest contribution to the NH ozone STE budget.

Polar region (280K-310K): Stratosphere-to-troposphere ozone STE, with maximum in winter; Much smaller in magnitude -> few stratospheric ozone can reach the surface.

Bold – tropopause Dashed – isentropes

Colors – isentropic ozone STE Contours – zonal wind

- Troposphere-to-stratosphere (upward) ozone transport in subtropics, stratosphere-to-troposphere (downward) ozone transport in extratropics.
- Maximum of downward ozone STE situates at the poleward edge of the jet, and moves seasonally with the jet.

Insensitive to choice of tropopause

WACCM-3PVU

WACCM-WMO

Insensitive to choice of model

WACCM-3PVU

CMAM-3PVU

Processes affecting STE

For PV tropopause Q,

$$F_{STE} = -\frac{\partial M(\dot{q})}{\partial Q} \approx -\dot{Q}\frac{\partial m}{\partial Q}$$

Nakamura, 2007

For PV tropopause Q,

Nakamura, 2007

For PV tropopause Q,

Similar to the advective Eulerian meridional air mass flux

$$F_{y} = v \frac{\partial m}{\partial y} = \dot{y} \frac{\partial m}{\partial y}$$

by replacing the Eulerian coordinate into PV coordinate

For PV tropopause Q,

Similar to the advective Eulerian meridional air mass flux

$$F_{y} = v \frac{\partial m}{\partial y} = \dot{y} \frac{\partial m}{\partial y}$$

by replacing the Eulerian coordinate into PV coordinate

$$F_{STE} = -\frac{\partial M(\dot{q})}{\partial Q}$$

Air mass flux across the PV tropopause is caused by the changes in the tropopause itself (PV tendency)

$$F_{STE} = -\frac{\partial M(\dot{q})}{\partial Q}$$

For PV tropopause tendency,

For PV tropopause tendency,

Diabatic PV source: troposphere-to-stratosphere transport of ozone

(subtropics)

Isentropic PV mixing: stratosphere-to-troposphere transport of ozone

(pole) Isentropic Mixing

Colors – ozone STE component Contours – zonal wind

(subtropics)

(pole) Isentropic Mixing

Colors – ozone STE component Contours – zonal wind Large cancellation between ozone STE associated with isentropic mixing and ozone STE associated with diabatic PV source, but the former slightly overwhelms.

Summary

 Different isentropic (meridional) regions correspond to ozone STE with different direction, magnitude, and seasonality.

Summary

 The strongest ozone STE occurs on the poleward flank of the tropospheric jet and shifts seasonally with the jet.

Summary

 Diabatic heating induces troposphere-tostratosphere ozone STE, while isentropic mixing induces mostly stratosphere-to-troposphere ozone STE. The latter overwhelms slightly over the former.

