Wave clouds and PSCs above Scott's Discovery Hut at sunset, Sept. 26, 2004. Photo by Alan Robock

Funded by: New constraints from A-Train Observations and the WACCM-SD/CARMA Model. Proposal in Support of JPL Submittal to NASA ROSES 2013 NNH13ZDA001N - A.17

The microphysical simulation of PSCs based on SD-WACCM/CARMA model over 2010-2011 winter

WAWG 2015. 02.

Yunqian Zhu¹, Owen Brian Toon¹, Douglas Kinnison², Alyn Lambert³, Matthias Brakebusch¹, Charles Bardeen², Michael Mills², Jason English¹ 1. ATOC & LASP at Univ. of Colorado; 2. NCAR; 3. JPL

Department of Amorphelic and Oceanic Sciences with the science of the science of

How do we form the PSCs in the model?

HNO₃ abundance is affected by variety of sources and sinks. We are interested in the denitrification.

The NAT nucleation rate is not known, we test 3 homogeneous schemes.

The nucleation probability is as a function of temperature and HNO_3 mole fraction of the STS particles [Tabazadeh et al., 2002].

First, we test the model without NAT formation. We find 60% of HNO₃ change is caused by NAT denitrifying and 40% is caused by dynamics.

Then we test NATscheme and NADscheme.

We test the slopeflat case and find it fits the MLS observations the best.

7

The simulations agree with MLS observations except near 400K where the model has a cold bias of 0.5K to 1K relative to MLS.

MLS HNO3

Model HNO3

Theta [K]

The model captures the locations of STS and NAT.

0	3	6	9	12

The modeled backscattering ratio is very close to the CALIPSO observation.

The PSCs coverage is overestimated in late January.

from MC pitts

3 4 5 Million km²

0

1

2

6

The model (solid lines) overestimates O₃ in Mid-March compared with MLS. The sensitivity test with -1.5K improves the prediction.

Conclusions

*****Tuning the free energy in the nucleation rate improves HNO₃ prediction compared with NATscheme and NADscheme.

*****The locations and backscattering ratio of PSCs are similar with CALIPSO observations.

*****The area of the vortex containing PSCs is too high in late January because of the different threshold of NAT definition.

Future work

We will simulate the Antarctic PSCs.

We will add ice particle formation in our microphysical model.

SHOON 2013. MAY

