
Improving Model Throughput by
Parallel Splitting Atmospheric

Physics and Dynamics

Peter Caldwell (LLNL)
Mark Taylor (SNL)

AMWG Workshop (2/9/16)

Office of Science

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Background:
For intellectual and numerical tractability, climate models are broken into components:

Things to note:
• CAM5 is composed of a variety of processes
• the coarsest granularity is “dynamics” (fluid flow) and “physics” (diabatic processes)
• dynamics uses substepping, so returns a state (T=x, q=y...) rather than a tendency

(dT/dt=x, dq/dt=y...)

Fluid “Dynamics”:
there are qsplit
dynamics steps per
tracer step

“Tracer” Advection:
there are rsplit tracer
steps per remap step

Vertical “Remap”:
there are nsplit
vertical remap steps
per physics step

Fig: Process coupling in CAM5

Coupling Between Processes
Coupling between processes is fairly crude in GCMs, which is a
major source of model error. Typical coupling strategies:
A. Parallel Split (aka process split): All processes are computed from the same state

B. Sequential-Update Split (aka time split): The state is updated after each process

staten Proc1 tend1n Proc2 staten+1

C. Sequential-Tendency Split: The tendency from Proc1 is used by Proc2

Proc1
staten

tend1n
staten+1

Proc2 tend2n

staten Proc1 tend1n staten* Proc2 tend2n staten+1

used in CAM microphysics

used in
CAM
physics

used to couple physics
and dynamics

Sequential-Tendency Splitting is More Skillful

• Sequential-tendency
splitting
– uses more

information
– couples processes

more tightly
– tends to perform

better (see fig)

Fig: 10m windspeed error for (a)
parallel-split and (b) sequentially-
split versions of the ECMWF model
with Δt=60 min (using Δt=5 min as
“truth”. From Beljaars et al (1991)

But Doing Things in Parallel is Faster!
Dividing work over more cores should increase throughput

I’m giving her all
she’s got, captain!

of cores on machine

max cores dyn
can use

max cores dyn
can use

+ phys can use 1 core/phys
column

Now we’re exploiting all available
parallelism for this machine!

ne120
(25 km)

ne120
(25 km)

ne240
(12 km)

Mira titan cori
p1

cori
p2

Aurora/
Summit

Yellow
stone

Cheyenne

86K 800K 3M 800K 300K 50K 650K millions 72,576 145,152

Max cores
dyn can use: # of columns in model # of cores on machine

Table:
statistics
about core
usage

Things to note:
• Running phys and dyn in

parallel allows us to use
more cores

• Since phys requires no
columnwise communication,
it scales perfectly

• this allows us to add
more sophisticated
parameterization with
no time penalty Fig: Max core count in sequential and parallel implementations

Reality Check:

• CAM5-SE scales just fine for all but the
biggest core counts

• Running things in parallel makes them
faster, not cheaper

Fig 1: Optimal performance layout for a high-res
CESM1 run on Titan

Ocn

Coupler

Sea Ice

Atmospheric
Dynamics

Atmospheric Physics

La
nd

150

100

50

Se
co

nd
s/

Si
m

ul
at

ed
 D

ay

0 10K 20K 30K
CPU cores

Fig: parallel-splitting enthusiasts

• Completely hiding time spent
in phys behind time spent in
dyn only reduces atmos run
time by ~40% (at ¼o resolution)
and total coupled model run
time by ~20%

Let’s Do This!
We want:

Phys
staten

ptend
staten+1

Dyn dtend

staten Phys ptend Dyn staten+1

We currently have:

Oh no! Dyn returns a
state, not a tendency

Let’s try:

Dyn staten+1

Phys ptendn

Phys

Dyn

ptendn-1

staten

ptendn+1

staten+2

“Lagged-Parallel Splitting”: Lag the ptend used by Dyn by 1 step to break dependence
between Phys and Dyn.

Lagged-Parallel Splitting

• Results are disastrous
because some physics
schemes expect an updated
version of the state from
last step:
– macrophysical condensation
– aerosol activation
– energy fixer
– others?

Lesson: be careful of hidden
assumptions!

Cl
ou

d
W

at
er

 P
at

h
(k

g/
m

2)

min

Fig: Cloud water path (TGCLDCWP) every
timestep for the 48 timesteps before the
model crashes.

• For initial tests, we lag physics without changing
processor layout

Try 2: Parallel-State Splitting

• ptend can no longer be used inside dynamics
• Any timestepping scheme can be used to

compute staten+1 – what is best?

Phys ptend

Dyn state*

staten staten+1 = state* + ptend × dt

Applying ptend after dynamics also allows us to parallelize
physics and dynamics

Parallel-State Splitting - Overconsumption

Parallel yet
isolated processes
can over-deplete
resources when
combined.

This problem is encountered any time parallel splitting is used
• if equations are in flux form (moving concentrations from one bin to another), fluxes can be

rescaled to prevent negatives without violating conservation (done for microphysics and
dynamics)

• at the phys/dyn level, changes are not simple transfers so that won’t work. We currently just
set negative values to zero.

– This is actually how physical tendencies are already handled in SE dynamics
– “Clipping” negative tendencies violates conservation, however.
– Is this acceptable? Is there a better way?

Parallel-State Splitting: Results

• The model seems to run stably and produces
something that looks like planet earth.

Fig: ANN average CLDTOT from 1 yr
simulation with parallel-state splitting.

• Hints of the under-
lying grid exist

Conclusions:
• Running physics and dynamics in parallel can

speed up high-resolution simulations
– No time penalty for more sophisticated physics!

• Changing model coupling is hard
– Constrained by assumptions buried in the code
– Parallel splitting invites

overconsumption/conservation issues

	Improving Model Throughput by Parallel Splitting Atmospheric Physics and Dynamics
	Background:
	Coupling Between Processes
	Sequential-Tendency Splitting is More Skillful
	But Doing Things in Parallel is Faster!
	Reality Check:
	Let’s Do This!
	Lagged-Parallel Splitting
	Try 2: Parallel-State Splitting
	Parallel-State Splitting - Overconsumption
	Parallel-State Splitting: Results
	Conclusions:

