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The HOMME DyCore Framework

Horizontal Grid system (Cubed-Sphere)
HOMME hydrostatic framework is based on
cubed-sphere geometry (Sadourny, 1972).
Sepctral Element (SE) and discontinuous
Galerkin (DG) methods are used for spatial
discretization

Quasi-uniform rectangular mesh with local
refinement capability, well suited for SE, DG
or FV methods.

HOMME-SE variant is used in CAM
framework (CAM-SE) as a default dycore.
Explit time-stepping and proven petascale
capability (Dennis et al. 2012).Governing Equations (η-coordinate)

∂v
∂ t

+( f +ζ ) k̂×v+ η̇
∂v
∂η

+∇E +
RTv

p
∇p = Fv

∂T
∂ t

+v ·∇T + η̇
∂T
∂η
− R

c∗p
Tv

ω

p
= FT

∂

∂ t

(
∂ p
∂η

)
+∇ ·

(
v

∂ p
∂η

)
+

∂

∂η

(
η̇

∂ p
∂η

)
= 0

∂

∂ t

(
∂ p
∂η

qk

)
+∇ ·

(
∂ p
∂η

vqk

)
+

∂

∂η

(
η̇

∂ p
∂η

qk

)
= 0

HOMME currently employs
pressure-based η-coordinates in the
vertical with FD or VL discretization .

Semi-Lagrangian FV scheme (CSLAM)
for multi-tracer transport

Hydrostatic dynamics is not suitable or
valid for horizontal resolution less than
10 KM (1/8◦)
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Toward a Non-Hydrostatic (NH) HOMME: Basic Design

The NH model development in HOMME
framework is named as the High-Order
Multiscale Atmopsheric Model
(“HOMAM”)

The dynamics is governed by 3D
compressible Euler/Navier-Stokes system
of equations, based on conservation of
mass, energy, momentum etc.

3D Compressible Euler system (flux-form) on a rotating sphere

∂ρ

∂ t
+∇ · (ρV) = 0

∂ρV
∂ t

+∇ · (ρV⊗V) = −∇p′− (ρ−ρ)gk

−2ρΩ×V+FM
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∂ρqk

∂ t
+∇ · (ρ qkV) = 0

V = (u,v,w) 3D wind field, ρ air density, p
pressure, θ potential temperature, qk moisture
variables, Ω erath’s rotation rate, f Coriolis
term, FM diffusive fluxes and forcing etc.

Density ρ = ρ +ρ ′, and pressure p = p+ p′

such that the basic state follows hydrostatic
balance, ∂ p/∂ z =−ρg.
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Compressible Euler System in Generalized Coordinates

The 3D compressible Euler system of equations on a rotating sphere in generalized
curvilinear coordinates (x1,x2,x3) can be written in tensor form (Warsi, 1992):
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Where ui is contravariant wind field, Gi j metric tensor,
√

G = |Gi j|1/2 is the Jacobian of the
transform, Gi j = (Gi j)

−1, and i, j,k ∈ {1,2,3}. The associated Christoffel symbols (second
kind) are defined as
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ρ is the air density, q is the mixing ratio (passive tracer field).
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Model Equations for the Cubed-Sphere Geometry
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Equiangular central projection

Curvilinear horizontal coordinates (x1,x2)

6 patched domains, x1,x2 ∈ [−π/4,π/4]

“Cartesian-like” computational domains

Shallow (thin) atmosphere approximation makes the the spherical domain as a vertically
stacked cubed-sphere layers.

x3 = radius r+ height z, s.t z� r =⇒ (x1,x2,x3)→ (x1,x2,z)

The metric tensor associated with shallow atmosphere takes a simple form,

Gi j =

 Ĝ11 Ĝ12 0
Ĝ21 Ĝ22 0

0 0 1

 , Ĝi j =
r2

µ4 cos2 x1 cos2 x2

[
1+ tan2 x1 − tanx1 tanx2

− tanx1 tanx2 1+ tan2 x2

]
,

where i, j ∈ {1,2} and µ2 = 1+ tan2 x1 + tan2 x2. Jacobian
√

Gh ≡ |Gi j|1/2 = |Ĝi j|1/2
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HOMAM: Vertical Grid System

Fig Courtesy: David Hall

Terrain-following height-based vertical z
coordinate.

Multiple options [e.g., Schär (2002),
Klemp (2011), SLEVE]

Vertical coordinate transformation
(Gal-Chen & Somerville, JCP 1975), is
currently adopted.

hs = hs(x1,x2) is the prescribed mountain profile and ztop is the top of the model domain

ζ = ztop
z−hs

ztop−hs
, z(ζ ) = hs(x1,x2)+ζ

ztop−hs

ztop
; hs ≤ z≤ ztop.

The Jacobian associated with the transform (x1,x2,z)→ (x1,x2,ζ ) is

√
Gv =

[
∂ z
∂ζ

]
(x1 ,x2)

= 1− hs(x1,x2)

ztop
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HOMAM: Vertical Coordinate Transform, (x1,x2,z)→ (x1,x2,ζ )

The vertical ‘physical’ velocity w = dz/dt, in (x1,x2,z) system

Vertical velocity in the transformed (x1,x2,ζ ) system is u3 = w̃,

w̃ =
dζ

dt
,
√
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√

GvG13
v u1 +

√
GvG23

v u2,

where (u1,u2) contravariant wind vectors on the cubed-sphere surface.

Metric coefficients (Clark 1977, JCP)
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The spacial derivates for an arbitrary scalar φ can be written in terms of the transformed
vertical ζ -coordinate as follows:
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HOMAM: 3D Transport Equation

The transport equation in flux-from for a tracer variable q in 3D (x1,x2,z) coordinates can be
written as
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Simplifications lead to logically “Cartesian-like” model equation. In computational
ζ -coordinate this reduces to
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+
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∂x1 +
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∂x2 =− ∂ (ψw̃)
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,

where the pseudo density ψ =
√

Gρq, and
√

G =
√

Gh
√

Gv, is the “composite” Jacobian
which combines the time-independent horizontal (

√
Gh) and the vertical (

√
Gv) metric terms.

ρq is the conservative variable and w̃ = dζ/dt is the vertical velocity due to the coordinate
transformation.
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HOMAM: Governing Equations in (x1,x2,ζ ) system

Final form of the ‘perturbed’ Euler system in (x1,x2,ζ ) 3D Cubed-sphere
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Note: M1

Γ
,M2

Γ
are geometric terms associated with cubed-sphere topology, they have no

vertical dependence for shallow atmosphere approximation.
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Computational Domain (Horizontal)

k+1

kx
y

z

Ωi,j,k

Dimensional split approach: The computational domain D is decomposed into 2D + 1D.
Independent DG discretization for horizontal (x1,x2) cubed-sphere surfaces, and vertical (ζ )
direction.

Cubed-sphere panel is tiled with non-overlapping Ne×Ne elements, each with Np×Np Gauss
quadrature points. This is a standard setup in HOMME framework.

Horizontal elements are stacked in the vertical direction, which forms the 3D grid system.
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Computational Domain (Vertical)

HOMAM Grid Structure
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The vertical grid line z or ζ is partitioned into Vnel 1D elements, each with Ng Gauss points.
This is a major design change in HOMME/CAM framework.

Currently Gauss-Legendre (GL) quadrature elements are used in the vertical, which define
independent vertical levels with optimal accuracy.

Total degrees-of-freedom (dof) is 6N2
e N2

p×VnelNg.

Other possibilities: High-order FV discretization (WENO, Multi-Moment etc.)
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Why DG for spatial discretization?

C

DG SE

FV
Boundary Discontinuity   Continuous 

0

SE and nodal form of DG use identical GLL
grid system. Same MPI communication can
be used.

At element edges SE employs averaging
(DSS) which may cause oscillations.

DG relies on flux operations as in FV
method at element edges.

DG Advantage: Smooth evolution of
solution

DG has about 20% smaller time-step
restriction compared to SE with explicit
methods.
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DG-3D Results

DG-3D Hydrostatic Dycore (Nair et al. Comput. & Fluids, 2009)

JW-Baroclinic Instability Test, Day 8 Ps (≈ 1◦ resolution)

The DG Solution is smooth and free from “spectral ringing”.

HOMME SE version uses hype-diffusion (∇4), DG version uses LDG diffusion (∇2)
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DG Spatial Discretization for an Element Ωe in D
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The domain D is partitioned into
non-overlapping elements Ωi j

Element edges are discontinuous

Problem is locally solved on each element Ωi j

Approximate solution Uh belongs to a vector
space Vh of polynomials PN(Ωe).

The Galerkin formulation: Multiplication of the basic equation by a test function ϕh ∈ Vh and
integration over an element Ωe with boundary Γe,∫
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DG Method: Nodal Spatial Discretization
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Every element Ωe is mapped onto a unique reference element [−1,1]2, with local coordinates
(ξ ,η) ∈ [−1,1]. Grid structure is identical to SE method

Construct a nodal basis set using a tensor-product of Lagrange polynomials hi(ξ ), with roots
at Gauss-Lobatto-Legendre (GLL) or Gauss-Legendre (GL) quadrature points {ξi}.
The approximate solution and test functions are expressed in terms of basis function:

Uh(ξ ,η) =
N

∑
i=0

N

∑
j=0

Ui j hi(ξ )h j(η) for −1≤ ξ ,η ≤ 1

Final form for the discretization leads to a system of ODEs:

∂U
∂ t

+∇ ·F(U) = S(U) ⇒ d
dt

Uh(t) = L (Uh)
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Time Stepping Challenges for the ODE system

For the resulting ODE systems:
dUh

dt
= L(Uh), t ∈ (0, tT )

where L is the DG spatial discretization operator.

Options & Challenges

Explicit time integration efficient and easy to implement.
Stringent CFL constraint ⇒ tiny ∆t, limited practical value.

C∆t
h̄

<
1

2N +1
, h̄ = min{∆x,∆z}

Implicit time integration: Unconditionally stable but generally expensive to solve for a 3D
model.

Horizontally Explicit and Vertically Implicit (HEVI). Particularly useful for 3D NH modeling
(∆z : ∆x = 1 : 1000).

Practical approach: Split Explicit (e.g. WRF, MPAS, NICAM)
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DG-NH Time Stepping with HEVI (Strang-type Split)

Solve the ODE dU/dt = L(U) system, where U = (
√

Gρ ′,
√

Gρu1,ρu2,
√

Gρw,
√

G(ρθ)′)T .

The spatial DG discretization corresponding to L(U) is split into horizontal (H) and vertical
(V ) components, s.t. L(U) = LH(U)+LV (U)

U1 := Uh(t),
d
dt

U1 = LH(U1) in (t, t +∆t/2]

U2 := U1(t +∆t/2),
d
dt

U2 = LV (U2) in (t, t +∆t],

U3 := U2(t +∆t),
d
dt

U3 = LH(U3) in (t +∆t/2, t +∆t],

and Uh(t +∆t) = U3(t +∆t).

Possible options are is to perform “H−V −H” sequence of operations and “V −H−V ”
sequence.

The vertical part may be solved implicitly with DIRK (Diagonally Implicit Runge-Kutta) 1.

HEVI may be viewed as an IMEX Runge-Kutta (RK) method (Giraldo et al. 2009)

For the implicit solver:
inner linear solver uses Jacobian-Free GMRES.
It usually takes 1 or 2 iterations for the outer Newton solver.

1Durran, 2010

Ram Nair (rnair@ucar.edu) Nonhydrostatic HOMME AWG-16: Feb 9th, 2016 17 / 25



Time Stepping for 2D Model: Schär Mountain Test-2

Schemes ∆t (s) CPU time (s) Speedup
Explicit 0.04 114.10 1.0

ARS(232) 0.4 71.65 1.6
HEVI 0.4 59.67 1.91

Ref: Bao, Kloefkorn & Nair (MWR, 2015)
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3D Advection Test: “Hadley-like” Meridional Circulation

DCMIP: https://earthsystemcog.org/projects/dcmip-2012/,
Kent et al. (2014, QJRMS)

DCMIP-12: A deformational flow
that mimics a “Hadley-like”
meridional circulation.

The wind fields are designed so that
the flow reverses itself halfway
through the simulation and returns
the tracers to their initial position.

The exact solution is known at the
end of the run (1 day).

HOMAM setup for 1◦ L60:
Ne = 30, Np = 4 (GLL);
Vnel = 15; Ng = 4 (GL),
∆t = 60 s, 1 day simulation.

HEVI, HEVE and Full (un-split) produce visually identical results.
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3D Advection DCMIP-12 Test: Convergence
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Convergence Rate: DCMIP, Kent et al. (2014), Hall et al (2016)

Errors/Models: Mcore CAM-FV ENDGame CAM-SE HOMAM
`1 2.22 1.93 2.18 2.27 2.62
`2 1.94 1.84 1.83 2.12 2.43
`∞ 1.64 1.66 1.14 1.68 2.16

Table: Average convergence rate for the normalized error norms for the Hadley test (DCMIP test 1-2)
computed using resolutions 2◦,1◦,0.5◦ horizontal, and respectively with 30,60,120 vertical levels.

Temporal convergence is between 1st and 2nd-Order with the Hadley test.
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3D Advection: Flow Over Rough Orography (DCMIP-13)

Figure: Schematic for DCMIP-13 test initial condition (Figure courtesy: David Hall)

A series of steep concentric ring-shaped mountain ranges forms the terrain. The prescribed
flow field is a constant solid-body rotation (Kent et al., 2014).

The tracer field q is given by three thin vertically stacked cloud-like patches (non-smooth)
which circumnavigate the globe and return to their initial positions after 12 days.
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HOMAM: 3D Advection, Flow Over Rough Orography
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HOMAM setup for 1◦ L120:
Ne = 30, Np = 4 (GLL);
Vnel = 30; Ng = 4 (GL),
∆t = 6s, 12 day simulation.

Error MCore CAM-SE HOMAM
Norm 1◦L120 1◦L120 1◦L120
`1 0.83 0.65 0.78
`2 0.55 0.27 0.50
`∞ 0.73 0.75 0.76

[Kent et. al. (2014); Hall et al. (2016)]

Vertical cross-sections along the equator for the tracer field q = q4 for the DCMIP test

The results are simulated with HOMAM using the HEVE/HEVI scheme at a horizontal
resolution of 1◦, 60 vertical levels, and ∆t = 12s.

Ram Nair (rnair@ucar.edu) Nonhydrostatic HOMME AWG-16: Feb 9th, 2016 22 / 25



Preliminary NH Benchmark Test Results with DCMIP

DCMIP Test 2-0-0: Steady-state
hydrostatically-balanced atmosphere at rest,
examines the accuracy of the pressure gradient
error.

Regular sized planet, vertical velocity w after 6
days.

DCMIP Test 2-1: NH mountain waves over a
Schär-type Mountain (rough orography) on a
reduced planet (X = 500), u′ after 3600s

Ne = 20,Np = 4,Ng = 4, ∆t = 0.20s
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HOMAM: Nonhydrstatic Gravity Waves (DCMIP-31)

NH Gravity Wave test (DCMIP-31) on a reduced planet (X = 125), θ ′ after 3600s
Ne = 25,Np = 4,Ng = 4 (∆x≈ ∆z≈ 1 km), ∆t = 0.20s
The initial state is hydrostatically balanced and in gradient-wind balance. An overlaid
potential temperature perturbation triggers the evolution of gravity waves.

ICON-IAP

ENDGame

Reference

Ram Nair (rnair@ucar.edu) Nonhydrostatic HOMME AWG-16: Feb 9th, 2016 24 / 25



Summary

Early results with HOMAM Dycore (split and unsplit) are promising, and it performs well
under benchmark test cases.

Accuracy of the operator-split DG is acceptable.

HEVI effectively relaxes the CFL constraint to the horizontal dynamics only, and permits
significantly larger time step as opposed to the fully explicit method.

The 3D advection convergence shows a second-order accuracy with the smooth scalar field,
irrespective of a particular time-integrator (HEVI, HEVE or un-split).

Future Work (WIP)

Improve the efficiency of HEVI time-stepping (efficient pre-conditioner for implicit part).

Test Split-Explicit method, employ multi-rate time integration scheme (subcycling).

Latest DCMIP tests & ultimately CAM integration.

Thank You!
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