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1. Reduced complexity testbeds can aid in our
understanding of robust behaviors of the
Earth system and our ability to model them.

1. These simplified frameworks can aid in
model development by isolating model
‘deficiencies’ and studying them in detalil.
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How Do We Evaluate GCMs?

» Utilize a test hierarchy
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Storm Count
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» Utilize a test hierarchy
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Design of Experiments

« NCAR’s Community Atmosphere Model version 5.3 (CAM 5.3).

« The SE dynamical core with 30 vertical levels is used at the
horizontal resolutions of:
— ne=30 (~100 km)
— ne=120 (~25 km)
« Full physics in Aquaplanet mode is used, with a simplified ocean
covered Earth and constant SST of 29° C.
« No or uniform rotation effects (i.e., 10 deg. N).
 Diurnally varying, spatially uniform insolation (~340 W/m?).
* No direct and indirect effects of aerosols.

« Tuning parameters are set to ne=30 configuration for all
simulations.

e Sucha setup mimics similar simulatic_ms with Iimited-area or
cloud-resolving models, but at a relatively lower resolution.
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No Rotation:
Resolution Comparison
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No Rotation:
Structure
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This Simulations Are Unique
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No Rotation:

Precipitation
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Impact of Parameterizations

9th, 2016 [Courtesy of Adam Herrington]



CAM-SE ne30 (111 km)
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The mean environment is very similar in the rotating
case
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Intensity Distributions
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* Intensity increases with resolution.
« Absolute maximum wind behaves similarly to
azimuthal wind, but with higher values

February 9th, 2016 [Reed & Chavas 2015, JAMES]



 The difference in rmax between the two resolutions

IS large.

 While the difference in the rq2 distribution is not as

large and with a consistent shape of the
distributions.
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Storm Coverage
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Storm Coverage

« Packing density: the
theoretical maximum
packing density of circles
on the surface a sphere
[Clare and Kepert, 1991].

* Theoretical maximum
packing density values
appears to provide a
credible prediction for the
upper bound on our
packing density.
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* The two covariates captures 92% and 94% of
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variance of minimum surface pressure.
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Final Thoughts

* A hierarchical approach is crucial to understanding

the simulation of extreme events in high-resolution
GCMs.

« Reduced complexity configurations are ideal

candidates for process studies and understanding of:
— GCM model resolution

— GCM model physics

- GCM model dynamical core

- Different GCMs

kevin.a.reed@stonybrook.edu
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