

(Very) preliminary changes in high-resolution tropical cyclone climatology in CAM5.5

Colin M. Zarzycki

National Center for Atmospheric Research Advance Study Program (ASP)/Atmospheric Modeling and Predictability (AMP)

(with Pete Bogenschutz, Patrick Callaghan, Julio Bacmeister, Andrew Gettelman, John Truesdale etc...)

Atmospheric Modeling Working Group February 9th, 2016

Overview

- Simulation overview:
 - AMIP configuration (F compset, prescribed SSTs)
 - CAM5(.3) Previous AMIP simulations (20+ years)
 - CAM5.5 2 years of ne120 (28km) (SSS caveats!)

Physics	CAM5	CAM5.5/6/CLUBB
Deep convection	Zhang and McFarlane	Zhang and McFarlane
Shallow Convection	Park and Bretherton	CLUBB
PBL	Bretherton and Park	CLUBB
Macrophysics	Park	CLUBB
Microphysics	MG1	MG2

zarzycki@ucar.edu - AMWG, Boulder, CO, February 2016

Precipitable water eye candy

3 week TMQ loop, September

TempestExtremes

- New objective tracking algorithm for climate models (Ullrich *et al.*, in prep.)
- C++, time-parallel, lightweight
 - One year of ne120 SE data in 2 minutes (parallelized to 12 cores)
- Runs on unstructured grids (CAM-SE, MPAS) without regridding
- Operates on great circle distances
- Allows for local min/max, closed contour criteria, spatial offsets...
- Flexible command line inputs, usercustomizable I/O
- Adding capability to do "blobs" or other area-specific features (MCCs, heat waves, atmospheric rivers)
- Ask me if interested in using on Yellowstone/Geyser
- Available at: https://github.com/ paullric/tempestextremes

Trajectories

Trajectories

Pressure-wind curves

Pressure-wind curves

zarzycki@ucar.edu - AMWG, Boulder, CO, February 2016

850mb-10m wind shear

Idealized sensitivity ensembles

- Idealized experiment
- Initialize with warm core vortex on aquaplanet using variable-resolution CAM-SE
- Allows for deterministic experiments

Model configuration:

- Aquaplanet
- Δt = 900 sec / default tunings
- SST = 29° C
- Reed-Jablonowski (2012) DCMIP TC
- TC initialized at 10°N
- Tropical vertical temperature/moisture profiles
- No background flow, beta drift

Wind structure

Wind structure

Wind structure

Vertical velocity

Specific humidity

zarzycki@ucar.edu - AMWG, Boulder, CO, February 2016

Specific humidity (anomaly)

Spatial precipitation

Radial precipitation

CLUBB forecasts

0.125° (~13 km)

 CAM-CLUBB outperforms CAM5 with respect to intensity at lead times > 72 hours in 14 km forecast simulations

Summary

- CAM5.5 produces a higher frequency of TCs than CAM5
 - Changes in PRECT variability in tropics?
- Spatial pattern mixed bag, some improvements, some regression (internal versus external)
- Radius of maximum wind (TC core) larger in CAM5.5
- Biggest difference is 10-m wind speeds
 - Significantly larger reduction in wind speed from top of boundary layer to surface
 - DTCOND + humidity profiles indicate much more efficient removal of moisture in TC BL in CAM5.5
- Vertically and radially-integrated thermodynamics comparable despite surface/horizontal differences