Analyses of CAPT simulations with CAM5.3 and CLUBB-MG2 based on observations from the Azores

Xue Zheng, Stephen A. Klein, Hsi-Yen Ma, (PCMDI/LLNL) Peter Bogenschutz, Andrew Gettelman, (NCAR) Vincent E. Larson (Univ. of Wisconsin-Milwaukee)

2016 AMWG Meeting, NCAR, Boulder, CO

LLNL-PRES-681906

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Motivation

- The CAP-MBL ARM field campaign from Jun. 2009 to Dec. 2010
 - Unique resource targeting marine boundary layer (MBL) clouds

- Scientific Objective
 - To evaluate cloud parameterizations and identify deficiencies

Methodology

CAM5.3 control; CLUBB-MG2; CLUBB-MG1

From 05/31/2009 to 12/30/2010: Day 2 at one grid column (39.1N, 27.5W)

Hourly cloud cover vs. in-cloud liquid water path

Would this improvement impact on the cloud radiative effects?

Cloud statistics

- Negative cloud cover biases
- CLUBBMG2 has a larger variability in low-level-cloud cover
- Obs. in-cloud LWP has a positively skewed distribution

Surface SW cloud radiative effect (CRE) and transmissivity

- Positive SW CRE/transmissivity biases in CAM5.3 and CLUBBMG2
- CLUBBMG2: larger positive biases in the mean values of CRE and cloud transmissivity.
 - Where do the biases come from?

Cloud SW transmissivity vs. in-cloud LWP

CAM5.3

The negative biases in the surface SW transmissivity for all cloud cover bins compensates the CAM5.3 cloud cover bias

CLUBB-MG2

Not enough overcast cloud condition and too often clearsky and broken cloud condition + the reduction of compensating errors in CWP results in a higher cloud SW transimissivity bias.

Precipitation flux

- Precipitation flux decreases in CLUBBMG2 compared with CAM5.3 and CLUBBMG1.
- Deep convection scheme is active during 34 days in CAM5.3, 56 days in CLUBBMG1 and 55 days in CLUBBMG2.

Cloud/BL oscillation in CLUBBMG2

Oscillation frequency becomes higher in CLUBB-MG2 (clubb_rainevap_turb = .false.)

(22.5 ° S, 17.5 ° W)

A precipitating cumulus cloud case

05/22/2010

Single-column simulations

A lower-freq and stronger oscillation occurs in CLUBB-MG2.

A higher-freq and weaker oscillation occurs in CLUBB-MG2 no Turb-Evp. No oscillation in CLUBB-MG2 without precipitation evaporation

Cloud/PBL life cycles

Water vapor tendency from CLUBB (g kg⁻¹ s⁻¹)

We composite the life cycle of the boundary layer evolution

The composite life cycle of BL and cloud

CLUBB-MG2

CLUBB-MG2 no Turb-Evp

The cloud and precipitation vary closely with the PBL life cycle.

The impact of the rain evaporation

Cumulus clouds in CLUBB are sensitive to the evaporative cooling induced boundary layer decoupling.

Summary

- CLUBB-MG2 simulates a more realistic cloud variation from broken thin clouds to thick solid clouds.
- CAM5.3 produces stronger negative surface SW CRE by excessive in-cloud LWP.
- Due to the reduction of compensating errors in LWP, the lack of overcast cloud conditions results in larger bias of SW cloud transmissivity in CLUBB-MG2 than that in CAM5.3.
- A single-column modeling study demonstrates that cumulus clouds in CLUBB are sensitive to the evaporative cooling induced boundary layer decoupling.

Thanks!

