

2016 WINTER WORKING GROUP MEETINGS

COLA / AOES Land Group

Climate Simulations with Respect to Land Cover Change in CLM45 and CLM50

Liang Chen, Paul Dirmeyer

George Mason University

- CLM4.5 and CLM5.0 land cover change sensitivity experiments
- Observed climatic impacts of land cover change
- Validation of CLM using FLUXNET

Question #1

 Can CLM4.5 and CLM5.0 reasonably represent the impacts of land cover change on surface temperature?

CESM sensitivity experiment

Name	ATM	LND	Land Cover	
Ctrl_45_off			PFTs in 1850	
BareSoil_45_off	Qian et al. (2006)	CLM4.5 (CESM-1.2.2)	Remove all PFTs	
AllGrass_45_off			Replace all non-grass PFTs with grass	
Ctrl_50_off			PFTs in 1850	
BareSoil_50_off	Qian et al. (2006)	CLM5.0 (CAM55CLM50hydro)	Remove all PFTs	
AllGrass_50_off			Replace all non-grass PFTs with grass	

Metric for Biogeophysical Feedback

• the surface energy balance:

$$R_n = S + LW_{in} - \varepsilon\sigma T_s^4 = H + LE + G$$

• intrinsic biophysical mechanism (Lee et al., 2011):

$$\Delta T_s \approx \frac{\lambda_0}{1+f} (\Delta S) + \frac{-\lambda_0}{(1+f)^2} R_n (\Delta f_1) + \frac{-\lambda_0}{(1+f)^2} R_n (\Delta f_2)$$

albedo effect

surface roughness effect Bowen ratio effect

$$f = \frac{\rho C_p}{4\sigma T_a^3 r_a} \left(1 + \frac{1}{\beta}\right) \qquad \Delta f_1 = -\frac{\rho C_p}{4\sigma T_a^3} \left(1 + \frac{1}{\beta}\right) \underbrace{\Delta r_a}{r_a^2} \qquad \Delta f_2 = -\frac{\rho C_p}{4\sigma T_a^3 r_a} \underbrace{\Delta \beta}{\beta^2}$$

T_{surf} Change in BareSoil (CLM45)

ET Change in BareSoil (CLM45)

T_{surf} Change in BareSoil (CLM50)

ET Change in BareSoil (CLM5)

T_{surf} Change in AllGrass (CLM45)

-4 -2 -1 -0.5 -0.2 -0.1 0.1 0.2 0.5 1 2 4

T_{surf} Change in AllGrass (CLM5)

-4 -2 -1 -0.5 -0.2 -0.1 0.1 0.2 0.5 1 2 4

Observed T_{surf} change

ET Change in AllGrass (CLM45)

ET Change in AllGrass (CLM5)

Question #2

 Can CLM4.5 and CLM5.0 capture the observed impacts of land cover change on ET at paired FLUXNET sites?

FLUXNET paired sites

]	Pair	Period	Location	Name	Latitide	Longitude	Elevation (m)	Land cover	Separation (km)
1		1 2001-5	Duke Forest, NC	US-DK1	35.9712	-79.0934	168	grassland	- 0.69
	I			US-Dk2	35.9736	-79.1004	168	deciduous broadleaf	
2	2	2001-5	Duke Forest, NC	US-DK1	35.9712	-79.0934	168	grassland	0.78
	2			US-Dk3	35.9782	-79.0942	163	evergreen needleleaf	
3	3	2006-10	Flagstaff, AZ	US-Fwf	35.4454	-111.7718	2270	grassland	- 33.84
	5			US-Fmf	35.1426	-111.7273	2160	evergreen needleleaf	
4	4	2006	Albemarle,	US-NC1	35.8118	-76.7119	5	open shrub	- 4.04
	4		NC	US-NC2	35.8030	-76.6685	5	evergreen needleleaf	
5	5	2004	Boreal,	CA-SF3	54.0916	-106.0053	540	open shrub	- 10.00
	2004	SK	CA-SF2	54.2539	-105.8775	520	evergreen needleleaf	19.90	

LE change

Change in ET components

ET(OBS)
———— Ground Evaporation(CLM50)
— Veg Evaporation (CLM45)
Veg Evaporation (CLM50)
Veg Transpiration (CLM50)

Question #3

• How is the performance of CLM45 and CLM50 using the Protocol for the Analysis of Land Surface Models (PALS)?

The Plumbing of Land Surface Models: Benchmarking Model Performance

M. J. BEST,^a G. ABRAMOWITZ,^b H. R. JOHNSON,^a A. J. PITMAN,^b G. BALSAMO,^c A. BOONE,^d M. CUNTZ,^c B. DECHARME,^d P. A. DIRMEYER,^f J. DONG,^g M. EK,^g Z. GUO,^f V. HAVERD,^h B. J. J. VAN DEN HURK,ⁱ G. S. NEARING,^j B. PAK,^k C. PETERS-LIDARD,^j J. A. SANTANELLO JR,^j L. STEVENS,^k AND N. VUICHARD¹

 ^a Met Office, Exeter, United Kingdom
^b ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia
^c ECMWF, Reading, United Kingdom
^d CNRM-GAME, Météo-France, Toulouse, France
^e Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
^f Center for Ocean-Land-Atmosphere Studies, George Mason University, Fairfax, Virginia
^g NOAA/NCEP/EMC, College Park, Maryland
^h Oceans and Atmosphere Flagship, CSIRO, Canberra, Australian Capital Territory, Australia
ⁱ Hydrological Sciences Laboratory, NASA GSFC, Greenbelt, Maryland
^k Oceans and Atmosphere Flagship, CSIRO, Aspendale, Victoria, Australia
ⁱ Laboratoire des Sciences du Climat et de l'Environment, UMR 8212, IPSL-LSCE, CEA-CNRS-UVSO, Gif-sur-Yvette, France

(Manuscript received 27 August 2014, in final form 19 December 2014)

ABSTRACT

The Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER) was designed to be a land surface model (LSM) benchmarking intercomparison. Unlike the traditional methods of LSM evaluation or comparison, benchmarking uses a fundamentally different approach in that it sets expectations of performance in a range of metrics a priori—before model simulations are performed. This can lead to very different conclusions about LSM performance. For this study, both simple bectourser: Just cus lead to oct of the study of the study.

Unlike the traditional methods of LSM evaluation or comparison, benchmarking uses a fundamentally different

PALS sites

Statistical Metrics

(Best et al. 2015)

Sensible heat flux

Latent heat flux

Ranking the models

(Best et al. 2015)

n_t is the number of metrics *R_{ijk}* is the rank of model at site j for metric k (1 or 2)

 n_s is the number of sites

Conclusion

- CLM5.0 shows improved performance in bare soil sensitivity experiment.
- Both CLM4.5 and CLM5.0 have a good agreement with flux tower data, and CLM5.0 shows a little bit improvement (variability better, biases worse).
- Something is still missing in terms of climatic sensitivity of land cover/land use change (deforestation).

ET Change in AllGrass (CLM5 coupled)

ET simulation

* open land (grassland or shrub)

Forcing

Land Cover Types

Sensible Heat Flux

Latent Heat Flux

Grass: grassland (9); **NE**: needleleaf evergreen forest (10); **BE**: broadleaf evergreen forest (6); **BD**: broadleaf deciduous forest (6)

