Evaluating the need for integrated Land Use and Land Cover Change (LULCC) analysis

Difference in 2004 forest area between the year-2000 referenced and the chronological LULCC

Alan V. Di Vittorio

Lawrence Berkeley National Laboratory

Jiafu Mao and Xiaoying Shi

Oak Ridge National Laboratory

Annual CESM Working Group Meeting 9 February 2016

Earth Systems and Society Program

~18 ppmv CO₂ bias in 2004

³ More forest increases veg C gain by ~54 Pg and decreases CO₂ gain by ~15 ppmv over 90 years

Change in global area (from 2015)

Di Vittorio et al., 2014

 What is the contribution of LULCC uncertainty to simulated carbon cycle uncertainty?

 How does the LULCC-driven carbon uncertainty compare to the effects of CO₂ concentration, nitrogen deposition, and climate?

 How can we improve LULCC to reduce atmospheric CO₂ bias and improve carbon cycle projections?

6

iESM-CLM simulations: 1850 - 2004

Identical CMIP5 land use inputs

Case	LULCC Reference	LULCC assumptions
No LULCC	Constant 1850	No conversion
Default*	Year 2000	Proportional to PFTs
Max forest	Previous year	Δ Pasture/crop maximizes forest area
Pasture rule*	Previous year	+ Pasture replaces grass/shrub PFTs first
Proportional*	Previous year	Proportional to PFTs; accounts for pasture
Crop rule	Previous year	+ Crop replaces tree PFTs first
Min Forest	Previous year	Δ Pasture/crop minimizes forest area
Prop constant CO ₂	Previous year	Proportional to PFTs
Prop const CO ₂ /clim	Previous year	Proportional to PFTs
Prop const N dep	Previous year	Proportional to PFTs

• Atmosphere: CRU-NCEP, transient CO₂, N deposition, and aerosols

5.1 Million km² range in forest area by 2005

Unique spatial distributions of land cover

Net LULCC emissions (Pg C per year)

LULCC effects on total ecosystem carbon (Pg C)

Change in TOTECOSYSC due to land use

Atmospheric effects on change in TOTECOSYSC due to land use

Chronological LULCC raises CO₂ bias by ~7 ppmv

 Max vs Min forest could span ~10 ppmv CO₂
 33 Pg eco C range is 63% of the 52 Pg C CO₂ fertilization effect

- Eco C range is 80% of the 41 Pg C CO₂+climate effect
- Climate has little effect on LULCC emissions
- Forest PFT area is likely too high
- Potential for integrated LULCC analysis to reduce atmospheric CO₂ bias and improve projections

Chronological LULCC raises CO₂ bias by ~7 ppmv

- Max vs Min forest could span ~10 ppmv CO₂
 - 33 Pg eco C range is 63% of the 52 Pg C CO₂ fertilization effect
 - Eco C range is 80% of the 41 Pg C CO₂+climate effect
 - Climate has little effect on LULCC emissions
 - Forest PFT area is likely too high
 - Potential for integrated LULCC analysis to reduce atmospheric CO₂ bias and improve projections

Chronological LULCC raises CO₂ bias by ~7 ppmv

- Max vs Min forest could span ~10 ppmv CO₂
 33 Pg eco C range is 63% of the 52 Pg C CO₂ fertilization effect
 - Eco C range is 80% of the 41 Pg C CO₂+climate effect
 - Climate has little effect on LULCC emissions
 - Forest PFT area is likely too high
 - Potential for integrated LULCC analysis to reduce atmospheric CO₂ bias and improve projections

Chronological LULCC raises CO₂ bias by ~7 ppmv

- Max vs Min forest could span ~10 ppmv CO₂
 33 Pg eco C range is 63% of the 52 Pg C CO₂ fertilization effect
 - Eco C range is 80% of the 41 Pg C CO₂+climate effect
 - Climate has little effect on LULCC emissions
 - Forest PFT area is likely too high
 - Potential for integrated LULCC analysis to reduce atmospheric CO₂ bias and improve projections

Chronological LULCC raises CO₂ bias by ~7 ppmv

- Max vs Min forest could span ~10 ppmv CO₂
 33 Pg eco C range is 63% of the 52 Pg C CO₂ fertilization effect
 - Eco C range is 80% of the 41 Pg C CO₂+climate effect
 - Climate has little effect on LULCC emissions
 - Forest PFT area is likely too high
 - Potential for integrated LULCC analysis to reduce atmospheric CO₂ bias and improve projections

Questions?

Difference in 2004 forest area between the Max forest case and the Proportional case

This work is supported by the Director, Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 as part of the Integrated Assessment Research Program.

TOTECOSYSC(PgC) for model year 1850-2004

