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Implementation of +1/3 LMA in CESM

* CLM4.5BGC parameter SLA, = I/LMA,

* By default, +LMA causes +photosynthetic rates

V. o = : (Eqn.8.17 & 8.18)
% Oleson and Lawrence (2013)

*  We tested increased and no change in photosynthetic rates.
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Conclusions

LMA structural acclimation in response to CO,

has significant climate impacts in CESM.

A LMA causes WV leaf area index

because A\ carbon cost of leaf area

A physical warming: W ET, g\ SW

A chemical warming: % NPP




Caveats & Future Research

Climate impacts of LMA acclimation

could be influenced by:

- other climate drivers of LMA acclimation

- other concurrent changes in carbon allocation

- LMA acclimation effects on competition
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LMA increased in all C3 plants.
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