Climate Impacts of Plant Structural Acclimation in Response to Climate Change

Marlies Kovenock¹ and Abigail L.S. Swann^{2,1}

University of Washington ¹Dept. of Biology, ²Dept. of Atmospheric Sciences

Test large but plausible acclimation: +1/3 LMA in all C3 plants

Test large but plausible acclimation: +1/3 LMA in all C3 plants

Test large but plausible acclimation: +1/3 LMA in all C3 plants

Simulations

Simulations

85 year runs. Results calculated from last 65 years.

• CLM4.5BGC parameter SLA₀ = I/LMA₀

- CLM4.5BGC parameter SLA₀ = I/LMA₀
- By default, +LMA causes +photosynthetic rates

$$V_{cmax25} = \frac{\alpha LMA_0}{C:N_{Leaf}}$$
 (Eqn. 8.17 & 8.18)
Oleson and Lawrence (2013)

- CLM4.5BGC parameter SLA₀ = I/LMA₀
- By default, +LMA causes +photosynthetic rates

$$V_{cmax25} = \frac{\alpha LMA_0}{C:N_{Leaf}} \uparrow (Eqn. 8.17 \& 8.18)$$

Oleson and Lawrence (2013)

- CLM4.5BGC parameter SLA₀ = I/LMA₀
- By default, +LMA causes +photosynthetic rates

- CLM4.5BGC parameter SLA₀ = I/LMA₀
- By default, +LMA causes +photosynthetic rates

$$(Eqn. 8.17 \& 8.18)$$

$$C:N_{Leaf}$$

$$Oleson and Lawrence (2013)$$

• We tested increased photosynthetic rates

- CLM4.5BGC parameter SLA₀ = I/LMA₀
- By default, +LMA causes +photosynthetic rates

$$V_{cmax25} = \underbrace{\alpha LMA_0}_{C:N_{Leaf}} \uparrow \qquad (Eqn. 8.17 \& 8.18)$$

Oleson and Lawrence (2013)

• We tested increased and <u>no change in photosynthetic rates</u>.

Physical warming over land +0.3°C globally

Warming

Warming due to 📕 LAI

Warming due to LAI, ET

Warming due to LAI, ET, Solar Absorbed

Additional Warming due to **Carbon Uptake**

¹Kovenock and Swann in prep

Additional Warming due to **4** Carbon Uptake

¹Kovenock and Swann *in prep*, ²Ciais et al. 2013

Additional Warming due to **4** Carbon Uptake

¹Kovenock and Swann *in prep*, ²Ciais et al. 2013, ³Global Carbon Project

Additional Warming due to **4** Carbon Uptake

¹Kovenock and Swann *in prep*, ²Ciais et al. 2013, ³Global Carbon Project

¹ IPCC AR5, ² Estimated from Arora et al. 2013, ³ Cao et al. 2010, ⁴ Sellers et al. 1996, ⁵Pu and Dickinson 2012, ⁶Bounoua et al. 2010, ⁷ Pongratz et al. 2010, ⁸ Davin et al. 2010.

¹ IPCC AR5, ² Estimated from Arora et al. 2013, ³ Cao et al. 2010, ⁴ Sellers et al. 1996, ⁵Pu and Dickinson 2012, ⁶Bounoua et al. 2010, ⁷ Pongratz et al. 2010, ⁸ Davin et al. 2010.

¹ IPCC AR5, ² Estimated from Arora et al. 2013, ³ Cao et al. 2010, ⁴ Sellers et al. 1996, ⁵Pu and Dickinson 2012,
 ⁶Bounoua et al. 2010, ⁷ Pongratz et al. 2010, ⁸ Davin et al. 2010.

¹ IPCC AR5, ² Estimated from Arora et al. 2013, ³ Cao et al. 2010, ⁴ Sellers et al. 1996, ⁵Pu and Dickinson 2012,
 ⁶Bounoua et al. 2010, ⁷ Pongratz et al. 2010, ⁸ Davin et al. 2010.

Conclusions

LMA structural acclimation in response to CO_2 has significant climate impacts in CESM.

> ↑ LMA causes \checkmark leaf area index because ↑ carbon cost of leaf area

> \clubsuit physical warming: \clubsuit ET, \bigstar SW

 \clubsuit chemical warming: \clubsuit NPP

Caveats & Future Research

Climate impacts of LMA acclimation could be influenced by:

- other climate drivers of LMA acclimation
- other concurrent changes in carbon allocation
- LMA acclimation effects on competition

Moderating Mechanism #1 Soil evaporation partially compensates

Productivity per leaf area index Drives Transpiration per leaf area index

Productivity per leaf area due to I leaf area index

• Exponential decay of photosynthesis rates

Productivity per leaf area due to I leaf area index

• Exponential decay of photosynthesis rates

 Lower leaves less productive

46

Productivity per leaf area due to leaf area index

- Exponential decay of photosynthesis rates
- Lower leaves less productive
- Removing less productive leaves
 productivity/leaf area

LMA increased in all C3 plants.

