THE UNIVERSITY OF UTAH

An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in CLM 4.5

Brett Raczka¹, Henrique Duarte², Charles Koven³, Daniel Ricciuto⁴,

Peter Thornton⁴, John C. Lin², David R. Bowling¹

¹Department of Biology, University of Utah ²Department of Atmospheric Sciences ³Lawrence Berkeley National Laboratory

⁴Oak Ridge National Laboratory

LMWG Meeting, February 10th 2016

Motivation: Stable Carbon Isotopes

- ¹³C/¹²C fractionation occurs primarily during C3 photosynthesis
- Fractionation is influenced by stomatal conductance, assimilation rate which respond to environmental conditions (stress)
- Have potential to constrain land carbon models, improving
 simulation of ecosystem stomatal response and improving
 projections of land carbon uptake

Friedlingstein et al. 2014

Motivation: Stable Carbon leotones Objectives:

- Determine whether CLM, when calibrated to simulate Niwot Ridge fluxes and biomass, can also simulate ¹³C/¹²C at the site.
 - Identify if stable carbon isotopes provide constraint to model structure and function (e.g. stomatal conductance)?
- Identify environmental drivers of multi-decadal and seasonal fractionation.

1860 1900 1940 1980 2020 2060 2100

Friedlingstein et al. 2014

ain land oving tomatal ving n uptake

Carbon Isotope Discrimination by C3 Photosynthesis

$$\delta^{13}C_x \left(\frac{0}{00}\right) = \left(\frac{R_x}{R_{VPDB}} - 1\right) \times 1000$$

Carbon Isotope Discrimination by C3 Photosynthesis

$$\delta^{13}C_{\chi} \left(\frac{0}{00}\right) = \left(\frac{R_{\chi}}{R_{VPDB}} - 1\right) \times 1000$$

Environmental Drivers

- Humidity/VPD
- Light, Temp (Assim.)
- Soil moisture content
- Nutrient Limitation
- Atmospheric CO₂

Carbon Isotope Discrimination by C3 Photosynthesis

CLM uses Farquhar representation:

Intracellular leaf CO₂ defined:

Carbon Isotope Discrimination by C3 Photosynthesis

CLM uses Farquhar representation:

THE UNIVERSITY OF UTAH

Site: Niwot Ridge AmeriFlux Site

Observation rich site

- LTER site: 1952- present
- Flux tower measurements (carbon, water) 1998-present
- δ¹³C flask measurements, 1990-present
- δ^{13} C biomass measurements
- δ¹³C high resolution, 2006-present

Model Setup

Atmospheric Trace Gases:

Model Setup

Atmospheric Trace Gases:

Parameter Calibration:

- ENFT default
- decomp_depth_efolding (soil decomposition)
- Seasonal-varying V_{cmax25}

Meteorology:

- 1998-2013 gap-filled flux tower
- looped during spin-up
- constant 'climate' w/ interannual variation
- Transient trace gases (1850-2013)

Calibrated CLM matches fluxes & biomass

Calibrated CLM matches fluxes & biomass

CLM Model Formulations

 Isotope simulations highly sensitive to type of nitrogen limitation imposed

 $d = \frac{Potential growth carbon - Actual growth carbon}{Potential GPP},$

$$c_i = c_a - A_n (1 - d) P_{atm} \frac{(1.4g_s) + (1.6g_b)}{g_b g_s}$$

	Formulation	Pre-photosynthetic nitrogen limitation	Post-photosynthetic nitrogen limitation	Influences fractionation & c _i ?
		(Vcmax calibration)	(growth allocation)	
default 📫	Limited nitrogen	Yes (weak)	Yes, <i>d</i> > 0	Yes, <i>d</i> is active
~foliar nitrogen model	Unlimited nitrogen	Yes (strong)	No, <i>d</i> = 0	No, <i>d</i> = 0
	No ' <i>d'</i> discrimination	Yes (weak)	Yes, <i>d</i> > 0	No, <i>d</i> turned off

CLM reproduces observed biomass $\delta^{13}C$

 Limited nitrogen simulation (post-photosynthetic nitrogen limitation) tends to underestimate δ¹³C , weaker stomatal response

CLM reproduces observed biomass $\delta^{13}C$

 Limited nitrogen simulation (post-photosynthetic nitrogen limitation) tends to underestimate δ¹³C , weaker stomatal response

- Decreasing δ¹³C from
 combined Suess effect (70%)
 & increased photosynthetic
 discrimination (30 %)
- Rate of δ¹³C decrease depends upon turnover time of carbon pool

CLM reproduces observed biomass $\delta^{13}C$

- Decreasing δ¹³C from
 combined Suess effect (70%)
 & increased photosynthetic
 discrimination (30 %)
- Rate of δ¹³C decrease depends upon turnover time of carbon pool

• 'Observations' (grey-shade) from mixing model approach constrained by high resolution carbon flux and δ^{13} C obs. (Bowling et al. 2014)

• 'Observations' (grey-shade) from mixing model approach constrained by high resolution carbon flux and δ^{13} C obs. (Bowling et al. 2014)

- All formulations overestimate discrimination (yrs. 2006-2012) indicating stomatal conductance is too high (parameter, structure, VPD trend issue?)
- Perhaps the model/obs match of δ^{13} C biomass was fortuitous (compensating biases?)

• 'Observations' (grey-shade) from mixing model approach constrained by high resolution carbon flux and δ^{13} C obs. (Bowling et al. 2014)

- All formulations overestimate discrimination (yrs. 2006-2012) indicating stomatal conductance is too high (parameter, structure, VPD trend issue?)
- Perhaps the model/obs match of δ^{13} C biomass was fortuitous (compensating biases?)

• Limited nitrogen: no season trend

• Other formulations: Capture weaker summer discrimination

Seasonal discrimination: environmental drivers

1.4

1.4

2006-2012 monthly mean values

Unlimited nitrogen formulation produces observed **VPD** correlation

Seasonal discrimination: environmental drivers

2006-2012 monthly mean values

- Unlimited nitrogen formulation produces observed VPD correlation
- Net Assimilation is the primary control across season driver (spring, summer, fall)
- VPD is the primary control in summer only, inter-annual variation

Conclusions

- CLM is able to reproduce δ^{13} C in stem and biomass and the seasonal cycle in Δ_{canopy} , but only for certain model formulations
- The relative success of the 'pre-photosynthetic' formulation suggests a foliar nitrogen sub-model is worth testing in the future

Conclusions

- CLM is able to reproduce δ^{13} C in stem and biomass and the seasonal cycle in Δ_{canopy} , but only for certain model formulations
- The relative success of the 'pre-photosynthetic' formulation suggests a foliar nitrogen sub-model is worth testing in the future
- All model formulations overestimated contemporary observations of photosynthetic discrimination. Future work should identify whether this is a bias in parameterization (stomatal slope), structure (Leuning vs Ball-Berry) or multi-decadal trends in VPD (not included here).
- The model attributed most of the variation in seasonal discrimination to assimilation rate, and summer variation to VPD. Soil moisture had minimal impact.

Acknowledgements

- This research was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Science Program under Award Number DE-SC0010625.
- Thank you to Sean Burns and Peter Blanken for sharing flux tower and meteorological data from Niwot Ridge.
- We thank NOAA and ESRL for providing Niwot Ridge flask data.
- The support and resources from the Center for High Performance Computing at the University of Utah are gratefully acknowledged.

Supplemental Slides

Overview

Global: Double Deconvolution method Regional: Attribute Local: C3/C4 plant distributions

Key Question: Is vapor pressure deficit a primary driver of carbon isotopic photosynthetic discrimination at Niwot Ridge? (Bowling VPD relationship picture...)

THE UNIVERSITY OF UTAH

Methods: Initializing Niwot Ridge to present day (spin-up)

Parameter	Description	Value	Units
froot_leaf	new fine root C per new leaf C	0.5	gC/gC
froot_cn	fine root (C:N)	55	gC/gN
leaf_long	leaf longevity	5	years
leaf_cn	leaf (C:N)	50	gC/gN
lflitcn	leaf litter (C:N)	100	gC/gN
slatop	specific leaf area (top canopy)	0.007	m ² /gC
stem_leaf	new stem C per new leaf C	2	gC/gC
тр	stomatal slope	9	meter/sec
croot_stem	coarse root: stem allocation	0.3	gC/gC
deadwood_cn	dead wood (C:N)	500	gC/gN
livewood_cn	live wood (C:N)	50	gC/gN
flnr	fraction of leaf nitrogen within	0.0509	gN/gN
	Rubisco enzyme		
decomp_depth_e_folding	controls soil decomposition rate with depth	20	meter

Table 2. CLM 4.5 key parameter values for all model formulations

Contemporary discrimination: Reichstein- Lasslop partitioning

THE UNIVERSITY OF UTAH

CLM response to CO₂ fertilization

- In general, theory and observations suggests
 vegetation should maintain Ci/Ca (Franks et al. 2015)
 - CLM simulates a 'weak/moderate' stomatal response

THE UNIVERSITY OF UTAH

CLM response to CO₂ fertilization

Seasonal environmental drivers

Discrimination: Leaf VPD and RH

