Evaluating the strength of the land-atmosphere moisture feedback using global satellite observations

Paul Levine, Jim Randerson, Sean Swenson, and Dave Lawrence

February 10, 2016

NCAR BGC-Land-SD Working Group meeting Support from the DOE Office of Science BGC SFA

A conceptual model for fire predictability in the Amazon is based on a forest soils capacitor mechanism

Seasonal dynamics of terrestrial water storage

Interannual variability in terrestrial water storage

Interannual variability in atmospheric state during the drawdown interval

Forcing and response metrics for VPD

Findings I

- CESM1 and many CMIP5 ESMs may have stronger landatmosphere coupling than the observations on the seasonal-interannual time scales examined here
- Why?
 - Canopy interception and drizzle may yield ET that is too high
 - Landscape heterogeneity, bare soil coupling with runoff too small
 - Stomatal conductance coupling with VPD too strong
 - Subsurface drainage too slow
- Implications
 - Coupling between drought and heat waves may be too strong in the models
 - Projections of land surface warming during the 21st century from the multi-model mean may be too high

Findings II

• ET fluxes are in closer agreement with observations in CESM1.5

James Randerson

Department of Earth System Science, UC Irvine

jranders@uci.edu

http://sites.uci.edu/randersonlab/

Funding support from DOE Office of Science Biological and Environmental Research to the Biogeochemical Cycles Feedbacks Project, the National Science Foundation, NASA, and the Gordon and Betty Moore Foundation

Backup Slides

