Lateral Exchanges Control ET Seasonality in a Tropical Watershed: Analysis with PAWS+CLM

W.J. Riley¹

J. Niu¹, C. Shen³, J.Q. Chambers^{1,2}, J.M. Melack⁴ ¹Lawrence Berkeley Natoinal Lab, ²UC Berkeley; ³PSU, ⁴UCSB

Goals

- Develop 3D hydrological and biogeochemical model for an upland tropical watershed
- Investigate spatial structure, dynamics, and controls on exchanges with the atmosphere
- Inform requirements for ESM scale land models

PAWS+CLM Description

 3D surface, vadose zone, and GW hydrological and BGC model

 Tested and applied in several temperate watersheds

Shen and Phanikumar (2010); Riley and Shen (2014); Shen et al. (2015)

ESD15-020

Simulations Setup

- We applied PAWS+CLM to a 9000 km² watershed near Manaus, Brazil (NGEE-Tropics)
 - Niu et al. (submitted J. Hydrology)
 - 1 km² discretization
 - Channels delineated with 30 m NASA SRTM
 - Several climate forcings (CRUNCEP, TRMM, tower)
 - Calibration
 - Hydraulic conductivities, van Genuchten parameters, riverbed leakance

- Temporal and spatial correlation analyses
 - Characterize factors influencing hydrological and carbon budgets
 - Explain spatial variability of hydrological components
- Model experiments to investigate controls on ET seasonality
 - Full 3D model
 - No GW lateral flow
 - No overland flow
 - No channel flow

 Wavelet analysis to characterize phase relationships

Model Testing

- Precipitation
- Streamflow
- Tower data (NEE, ET)
- MODIS LAI and ET
- FLUXNET-MTE
- GRACE

Model Testing: Streamflow

Model Testing: ET

Model Testing: GRACE

Temporal Relationships (Watershed Average)

Temporal Relationships (Watershed Average)

Effects of Lateral Hydrological Exchanges

Wavelet Analysis

- Used a quasi-3D GW, surface water, and channel model (PAWS) coupled to CLM to investigate controls on ET seasonality
 - Lateral subsurface flows are critical
 - Runoff may play a secondary role
 - Column mode predicts phase 6 months earlier than observed and predicted by the full model
- Results (if confirmed elsewhere) argue for representation of 3D watershed hydrology in ESMs

EXTRAS

Model Testing: Carbon

- 2) Ground evaporation is 9.7% of ET, canopy evaporation is 27.9%, and transpiration is 62.4% of ET.
- Ground evaporation is 6.1% of
 P, canopy evaporation is
 17.6%, transpiration is 39.3% of P,
 and ET is 63% of P.

Model Testing: GRACE

Cross Wavelet Power Spectrum

