End Photolysis

Goals and Questions

HUMAN HEALTH AND AIR QUALITY SCIENTIFIC QUESTIONS:

What is the impact of the choice of <u>resolution</u> on the determination of human health impacts?

What is the impact of the choice of <u>chemical mechanism</u> on the determination of human health impacts?

MODEL UNCERTAINTIES

What is the impact of: spatial and temporal resolution, meteorology, chemical mechanism, and model on the quality of the simulated atmosphere and chemistry?

What leads to a sufficient climate-chemistry simulation (including uncertainties)?

Efficiency vs. Sufficiency

(R1)	$O_1 + h\nu \rightarrow O(^1D) + O_2$
(R2)	$O(^{1}D) + H_{2}O \rightarrow 2OH$
(R3)	$O(^{1}D) + N_{2} \rightarrow O + N_{2}$
(R4)	$O(^{1}D) + O_{2} \rightarrow O + O_{2}$
(R5)	$CO + OH \rightarrow H + CO_2$
(R6)	$H + O_2 + M \rightarrow HO_2 + M$
(R7)	$HO_2 + NO \rightarrow OH + NO_2$
(R8)	$NO_2 + h\nu \rightarrow NO + O$
(R9)	$O + O_2 + M \rightarrow O_3 + M$
(R10)	$HO_2 + O_3 \rightarrow OH + 2O_2$
(R11)	$OH + O_3 \rightarrow HO_2 + O_2$
(R12)	$NO + O_3 \rightarrow NO_2 + O_2$
(R13)	$NO_2 + OH + M \rightarrow HNO_3 + M$
(R14)	$NO_2 + O_3 \rightarrow NO_3 + O_2$
(R15)	$NO_3 + NO_2 + M \rightarrow N_2O_5 + M$
(R16)	$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$
(R17)	$H_2O_2 + h\nu \rightarrow 2OH$
(R18)	$H_2O_2 + OH \rightarrow HO_2 + H_2O$
(R19)	$HO + HO_2 \rightarrow H_2O + O_2$
(R20)	$HO + HO \rightarrow H_2O + O$
(R21)	$HO + HO + M \rightarrow H_2O_2 + M$
(R22)	$CH_4 + OH \rightarrow CH_3 + H_2O$
(R23)	$CH_3 + O_2 + M \rightarrow CH_3O_2 + M$
(R24)	$CH_3O_2 + NO \rightarrow CH_3O + NO_2$
(R25)	$CH_3O + O_2 \rightarrow CH_2O + HO_2$
(R26)	$CH_3O_2 + HO_2 \rightarrow CH_3O_2H + O_2$
(R27)	$CH_3O_2H + h\nu \rightarrow CH_3O + OH$
(R28)	$CH_3O_2H + OH \rightarrow CH_3O_2 + H_2O$
(R29)	$CH_2O + h\nu \rightarrow CHO + H$
(R30)	$CH_2O + OH \rightarrow CHO + H_2O$

Aerosol Forcing Ocean Heat Diffusion Climate Sensitivities

Initial Conditions

JOINT PROGO

Wang et al. (1998)

Table 1. Gaseous Phase Chemical Reactions Includ

Reaction

Number

(R31) (R32)

(R33)

(R34)

(R35)

(R36)

(R37) (R38)

(R39)

 $N_2O + O(^1D) \rightarrow 2NO$ (R40) $N_2O + O(^1D) \rightarrow N_2 + O_2$ (R41) Monier et al. (2015)

 $CHO + O_2 \rightarrow CO + HO_2$

 $SO_3 + H_2O \rightarrow H_2SO_4$ $CFCl_1 + O(^1D) \rightarrow products$

 $CFCl_3 + hv \rightarrow products$

 $CF_2Cl_2 + hv \rightarrow products$

 $N_2O + hv \rightarrow N_2 + O(^1D)$

 $CF_2Cl_2 + O(^1D) \rightarrow products$

 $SO_2 + OH + M \rightarrow HOSO_2 + M$ $HOSO_2 + O_2 \rightarrow HO_2 + SO_3$

Fernando Garcia-Menendez, Manuscript in Preparation, Do Not Cite

How do we add { some amount of } chemical complexity to the IGSM-CAM framework to address human health and air quality questions without compromising { too much } efficiency?

٦

$$ccamchem_off_pd = \begin{cases} T31\\ 4x5\\ 1.9x2.5 \end{cases} - \begin{cases} GEOS5\\ IGSM - CAM \end{cases} - \begin{cases} trop_mozart\\ trop_moz_MAM3\\ trop_BAM\\ super_fast_MAM3\\ super_fast_BAM \end{cases}$$

$$geoschem_off_pd = \begin{cases} 4x5\\ 2x2.5\\ 4x5_{(0.5x0.67)}\\ 4x5_{(0.25x0.31)} \end{cases} - \begin{cases} GEOS5\\ IGSM - CAM \end{cases} - tropchem$$

How do we add {**some amount of**} chemical complexity to the IGSM-CAM framework to address human health and air quality questions without compromising {**too much**} efficiency?

 $\begin{array}{c} \hline ccamchem_off_pd \end{array} \begin{cases} T31\\ 4x5\\ 1.9x2.5 \end{cases} - \begin{cases} \overline{GEOS5}\\ IGSM - CAM \end{cases} - \begin{cases} \overline{Top_mozart}\\ trop_moz_MAM3\\ trop_BAM\\ super_fast_MAM3\\ super_fast_BAM \end{cases}$ $geoschem_off_pd = \begin{cases} 4x5\\ 2x2.5\\ 4x5_{(0.5x0.67)}\\ 4x5_{(0.25x0.31)} \end{cases} = \begin{cases} GEOS5\\ IGSM - CAM \end{cases} tropchem$

How do we add {**some amount of**} chemical complexity to the IGSM-CAM framework to address human health and air quality questions without compromising {**too much**} efficiency?

How do we add {**some amount of**} chemical complexity to the IGSM-CAM framework to address human health and air quality questions without compromising {**too much**} efficiency?

 $\begin{array}{c} \hline ccamchem_off_pd \\ \hline 1.9x2.5 \\ \hline 1.9x2.5 \\ \hline \end{array} \\ - \begin{cases} \hline GEOS5 \\ IGSM - CAM \\ \hline \end{array} \\ \hline \end{array} \\ - \begin{cases} trop_mozart \\ trop_moz_MAM3 \\ trop_BAM \\ super_fast_MAM3 \\ super_fast_BAM \\ \hline \end{array} \\ \end{array}$ $geoschem_off_pd = \begin{cases} 4x5\\ 2x2.5\\ 4x5_{(0.5x0.67)}\\ 4x5_{(0.25x0.67)}\\ 4x5_{(0.25x0.631)} \end{cases} = \begin{cases} GEOS5\\ IGSM - CAM \end{cases} \text{tropchem}$

How do we add {**some amount of**} chemical complexity to the IGSM-CAM framework to address human health and air quality questions without compromising {**too much**} efficiency?

7

$$ccamchem_off_pd = \begin{cases} T31\\ 4x5\\ 1.9x2.5 \end{cases} - \begin{cases} GEOS5\\ IGSM - CAM \end{cases} - \begin{cases} trop_mozart\\ trop_moz_MAM3\\ trop_BAM\\ super_fast_MAM3\\ super_fast_MAM3\\ super_fast_BAM \end{cases}$$

BIG DISCLAIMER: I haven't checked or optimized these simulations at all I'm trying to get a feel for them, and a feel for the simulation length

Comparison to GEOS-Chem: offline IGSM-CAM meteorology with trop_chem

Ideal for IGSM Framework -> Ensembles of Simulations, Offline Meteorology

Chemistry Comparisons (**Preliminary**) Ultimate Focus: O3 and PM Air Quality

Month

Month

Month

Next Steps

- This week: Perform Sanity Tests:
 - Using superfast chemistry for regional air quality?
 - Using full chemistry in an ensemble framework?
- This month: ensure and document consistency between configurations, try to isolate the parts we're interested in
- And beyond: Test runs to slim down the set of simulations to something more reasonable
- Run simulations, get results

Thanks!

IGSM Wang, C., R.G. Prinn and A.P. Sokolov. A global interactive chemistry and climate model: Formulation and testing. Journal of Geophysical Research, 103(D3): 3399-3417, 1998.

Prinn, R.G., H.D. Jacoby, A.P. Sokolov, C. Wang, X. Xiao, Z. Yang, R.S. Eckaus, P.H. Stone, A.D.Ellerman, J.M. Melillo, J. Fitzmaurice, D. Kicklighter, G. Holian and Y. Liu. Integrated global system model (IGSM) for climate policy assessment: Feedbacks and sensitivity studies. Climatic Change, 41(3): 469-549, 1999.

Reilly, J., S. Paltsev, K. Strzepek, N. Selin, Y. Cai, K.-M. Nam, E. Monier, S. Dutkiewicz, J. Scott, M. Webster and A. Sokolov. Valuing Climate Impacts in Integrated Assessment Models: The MIT IGSM. Climatic Change, 2012.

IGSM-CAM Monier, E., J.R. Scott, A.P. Sokolov, C.E. Forest

and C.A. Schlosser. An integrated assessment modeling framework for uncertainty studies in global and regional climate change: the MIT IGSM-CAM (version 1.0). Geoscientific Model Development, 6: 2063-2085, 2013

Garcia-Menendez, F., R.K. Saari, E. Monier, and N.E. Selin. U.S. Air Quality and Health Benefits from Avoided Climate Change under Greenhouse Gas Mitigation. Environmental Science & Technology, 49(13): 7580–7588, 2015 Garcia-Menendez, F. et al. (in preparation)