


# Recent CAM-chem Developments

Louisa Emmons, Simone Tilmes, Alma Hodzic

Joint Atmosphere-WACCM-Chemistry WG session Wed. Feb. 10, 2016



## CAM-chem status and development

- Scientifically validated release is available <u>https://www2.cesm.ucar.edu/models/scientifically-supported</u>
  - Includes updates for CCMI, MAM4, MEGAN corrections
- CESM1.5 development versions
  - not released, but available for developers
  - Expanded tropospheric chemistry ("TS1" speciated aromatics, terpenes, updated isoprene oxidation, organic nitrates)
  - New SOA-VBS framework
  - Gas and aerosol emissions from CLM fire model, with vertical distribution applied in CAM
  - Ability to read 2 emissions files (different sectors, frequency) for a single compound

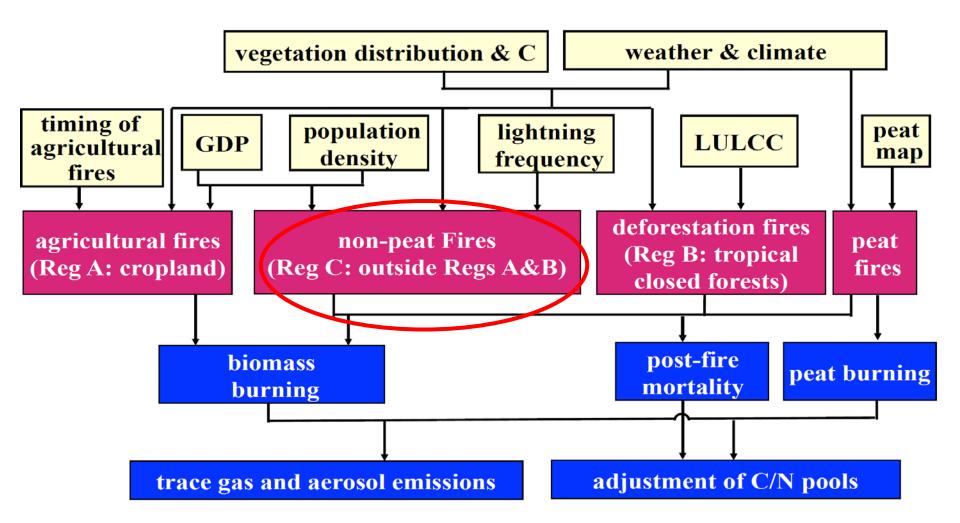
# Additional Plans for CESM2 (for CMIP6)

Refine and evaluate SOA-VBS implementation (including differences for low and high NOx), updated chemistry reaction rates and yields, etc.

CAM-chem additions planned/proposed:

- FAST-J/CLOUD-J (or TUV)
- Nitrate aerosol in MAM

Test couplings of land, biogeochemistry and atmospheric chemistry

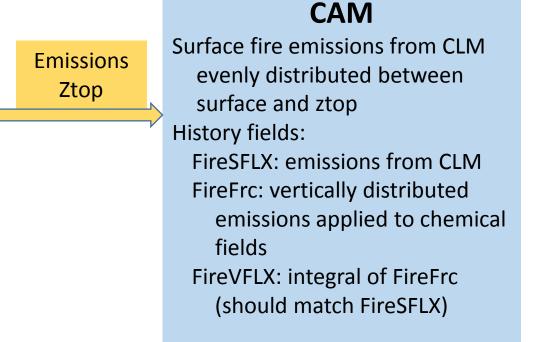

#### • Including methane, biogenic VOCs, fire emissions

Test and evaluate chemical and aerosol representation in CAM6/CLUBB at 1-degree (updates of the chemistry diagnostic tool needed)

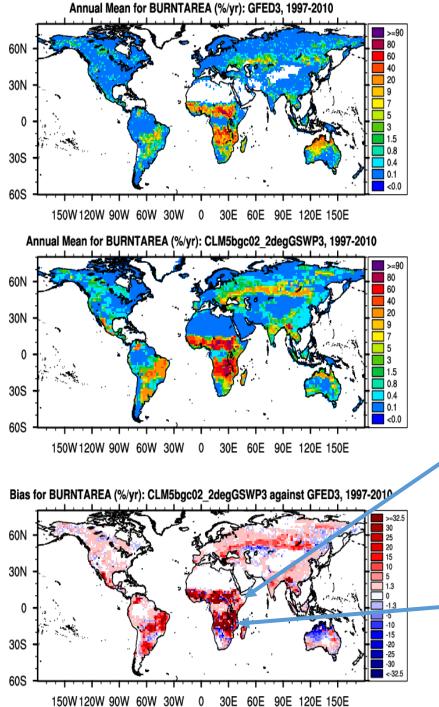
Coupling the fire model with the atmosphere in the Community Earth System Model (CESM1.2)

- **1. Implementing a fire injection parameterization**
- Test injection height implementation
- 2. Evaluation of prognostic fire emissions based on CLM4.5 (work for CLM5.0 in progress)
- Test the impact of prognostic fires on aerosols and chemistry

## Global Fire Scheme (CLM4.5 -> CLM5)

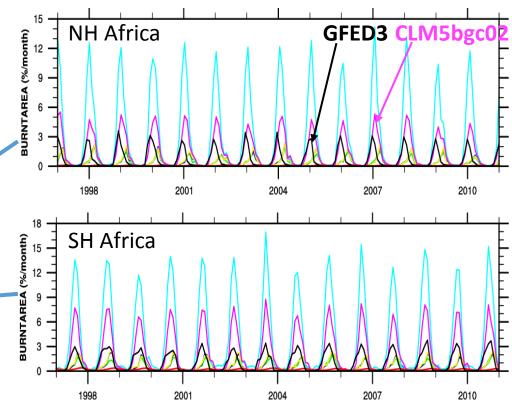



Li et al., 2013


## **Fire emissions CLM -> CAM-chem**

#### CLM

Emissions for 52 compounds calculated based on PFT (emission factors from Akagi et al., ACP 2011, Wiedinmyer et al., GMD, 2011) Mapped to CAM-chem chemistry mechanism and averaged to CAM grid Maximum altitude (ztop) for vertical distribution of emissions weighted by PFT for each grid box




Maria Val Martin is developing a parameterization dependent on PFT, region and month, with non-uniform vertical distribution – still being tested.



# Burned Area from CLM5 (prelim.) compared to GFED3

Tuning will be applied after final version of CLM5 is done, since parameterization of vegetation and carbon stocks may still change

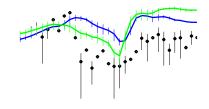


## Coupling the fire model with the atmosphere (CLM4.5)

Table 1: Budgets CAM5.4, CLM4.5 F2005

|                         | CAM chem-fire | CAM chem-control |
|-------------------------|---------------|------------------|
| BC-BURDEN (TgC)         | 0.102         | 0.120            |
| BC-EMIS-surface(TgC/yr) | 5.268         | 5.268            |
| BC-EMIS-Elev (TgC/yr)   | 1.767         | 2.145            |
| BC-LIFETIME (days)      | 5.331         | 5.937            |
| SO4-BURDEN (TgS)        | 0.418         | 0.365            |
| SO4-EMIS (TgS/yr)       | 1.411         | 1.411            |
| SO4-EMIS-surf (TgS/yr)  | 1.557         | 1.491            |
| SO4-EMIS-Elev (TgS/yr)  | 0.145         | 0.080            |
| SO4-TOTAL-PROD (TgS/yr) | 37.124        | 32.608           |
| SO4-LIFETIME (days)     | 3.916         | 3.861            |
| CO-BURDEN (Tg)          | 354.7         | 275.4            |
| CO-EMIS-surface (Tg/yr) | 681.6         | 1050.9           |
| CO-EMIS-Fire (Tg/yr)    | 760.1         | 0.0              |
| CO-EMIS-toal (Tg/yr)    | 1441.7        | 1050.9           |
| CO-CHEM-LOSS (Tg/yr)    | 2765.7        | 2230.0           |
| CO-LIFETIME (yr)        | 46.8          | 45.1             |

- In general good representation of aerosol with prognostic fires
- Too large emissions of CO at this point -> impact on ozone in comparison to observations
- -> Coupling to CAMchem is a great way of evaluating the fires module


## **Prognostic Fires Prescribed Fires**

| January | 1-2km | 4-5km | 7-8km |
|---------|-------|-------|-------|
|---------|-------|-------|-------|

March/April

June/July

Aug./Sept.



## Simplistic ways of treating the complex SOA lifecycle



- <u>CAM5 BASE</u> run (Liu et al. 2012, GMD)
  - SOG, oxygenated VOCs (gas), is not produced by oxidation, but directly emitted at the surface
  - Does not interact with VOC, is missing diurnal cycle
  - Amount of SOG is scaled arbitrarily by 50% (not here)
  - Additional semi-volatile and intermediate volatility precursors (S/IVOC) missing
  - SOA has no chemical loss through photolysis, what about aging?

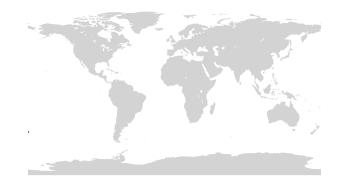
#### 1 species, 2 bins

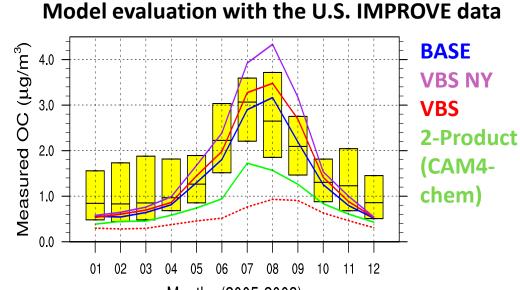
#### **Requires updated and full chemistry scheme**

•<u>VBS-NY</u> run (based on Hodzic et al. 2015, ACPD); updated SOA algorithm uses volatility basis set (VBS), code modified from Shrivastava et al., 2015

-Updated chemical reactions and volatility bins from lab studies

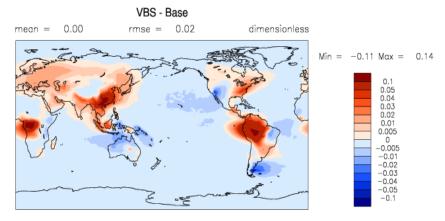
-Addition of semi-volatile and intermediate volatility precursors (S/IVOC) from anthrop. and biomass burning sources (Jathar et al. 2014):  $E_{SVOC} = 0.6 E_{POA}$  and  $E_{IVOC} = 0.2 E_{NMVOC}$ 


#### • <u>VBS</u> run:

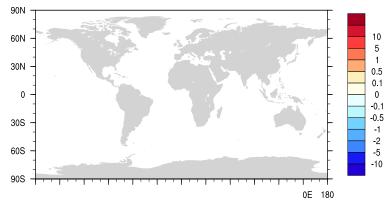

-Similar to VBS\_NY with the addition of loss processes (photolysis)

### Additional 10 SOA species required (5 for each bin) Additions 5 SOG species, 1 IVOC species

#### Results: Annual average SOA burden near the surface (up to 1.5km)


**BASE** SOA burden=0.24 Tg






Months (2005-2008)

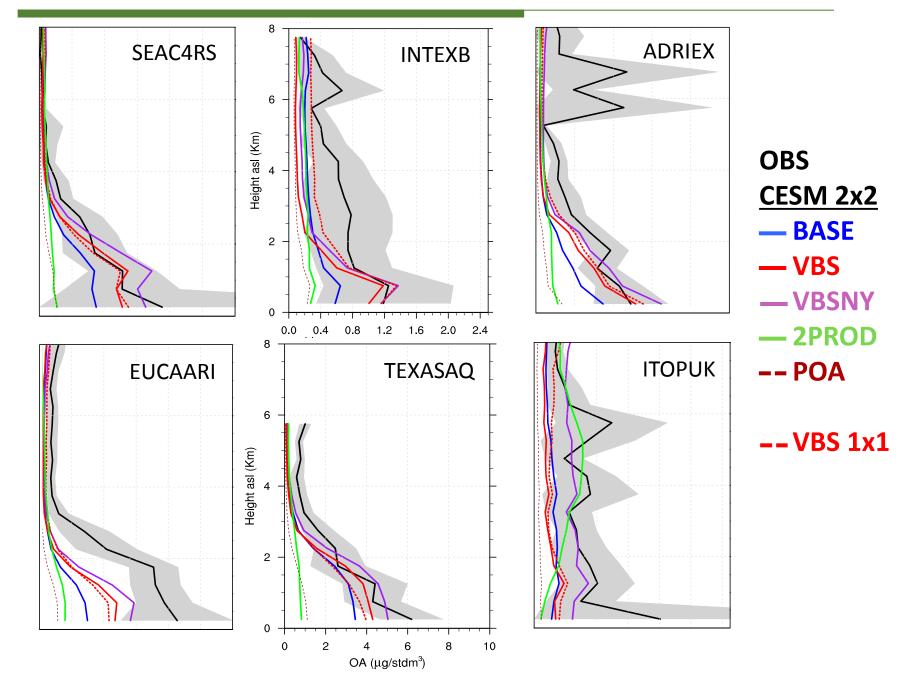
#### Large regional impact on AOD



#### **VBS - BASE**



#### -> more production in source regions


#### Results: Zonal average of SOA (µg/kg)

BASE VBS

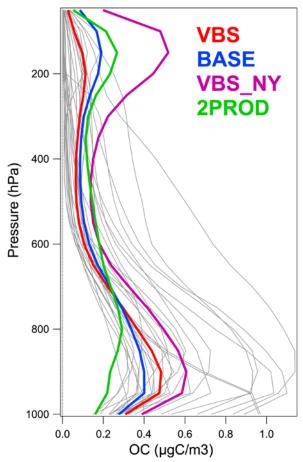
VBS - BASE

Difference in zonal distribution -> larger concentrations near source regions, lower concentrations in the upper troposphere

#### Comparisons with aircraft OA measurements



#### Summary:


- We have added a flexible VBS framework into CAM5 that includes updated yields and photolysis removal rates based on recent lab. measurements, and explicit chemistry.
- Includes 3 categories to identify different sources (biomass burning, biogenic and fossil fuel)
   -> additional 30 SOA species
- Require full tropospheric chemistry
- Improve comparison to observations

#### Work towards the release:

- Compare diurnal cycle for different schemes, including clouds, precipitation, test climate impact (coupled model version)
- Simplify for climate simulations; only one SOA category
  -> reduce to 10 SOA species

#### **Future work**

- Test further updated chemistry and compare to field campaigns
- Do a lot of new science with this !

