

Comparison of Organic Aerosol (OA) treatments in CESM: Difference in source contribution and lifetimes

Alma Hodzic, Simone Tilmes, Francis Vitt,

Manish Shrivastava, Louisa Emmons, Christoph Knote

GOALS:

- Describe the new SOA treatment in CAM5
- Discuss the way forward for climate research and for new CMIP runs

CESM meeting, Boulder, Feb. 2016

Motivation: Global SOA source is highly uncertain

- Studies constrained by observations point to a source of ~150 Tg/yr
- Current parameterizations mostly fail in predicting those values
- Revised production and removals

Simplistic ways of treating the complex SOA lifecycle

On the production side:

- Does not use oxidants to produce SOG => inaccurate diurnal cycle of SOA, Nb.
- Does not reflect updates in SOA production yields: wall corrected yields indicate a much stronger production

CAM5 BASE: Empirical SOA Yields, sometimes increased by 50% 2PROD BAM: Historic SOA mass Yields with wall loses (Heald et al. 2008) CAM5 VBS: Wall corrected SOA Yields (Zhang et al. 2014)

- Does not account for S/IVOCs emissions $(C_{>9})$ which are missing in inventories
- SOA production in the aqueous phase is not included

Shortcomings of the CAM5 BASE SOA (Liu et al. 2012)

Evidence for extra removal besides dry and wet deposition of SOA:

- SOA particles can undergo *heterogeneous reactions* with OH, O3
- SOA particles are sensitive to UV light during atmospheric aging:
 - 50% decrease of the condensed phase α -pinene ozonolysis SOA in 1 week of aging (Epstein et al. 2014)
 - Lifetime of ~10h of lab. α-pinene ozonolysis SOA under UV lamps (Henry and Donahue, 2012; Wong et al. 2014)
 - Heald et al. 2012: when SOA production is increased to match PBL concentrations, SOA levels in the upper troposphere are largely overpredicted
- Effective SOA photolysis rate (Hodzic et al. 2015, ACP)
 - Ambient aerosols with MAC=0.1 m²/g and QY=1% (1Carbon) JSOA = 0.04% JNO2
 - 40–60% decrease in SOA yields over 10 days of aging at mid-latitudes in summer

2 new model configurations for SOA production and removal

- <u>VBS-NY</u> CAM5 run (Hodzic et al. 2015, ACPD): updated SOA algorithm uses volatility basis set (VBS)
 - VBS based on the Statistical Oxidation Model fitting of the wallcorrected SOA yields (Zhang et al. 2014).
 - Addition of semi-volatile and intermediate volatility precursors (S/IVOC) from anth. and biomass burning sources (Jathar et al. 2014): E_{SVOC} = 0.6 E_{POA} and E_{IVOC} = 0.2 E_{NMVOC}
 - S/IVOC yields from explicit chemistry (GECKO-A)

• <u>VBS</u> CAM5 run:

- Volatility dependent Henry's law coeffs
- Photolytic SOA loss: J_[SOA] = 0.04% J_[NO2] (Hodzic et al. 2015, ACP)

30 particle species: 5 volatility bins, 2 modes (Aitken and accumulation) and 3 classes including fossil fuel, biogenic and biomass burning. We also have 15 gas species.

- CAM5.4 (1.9 x 2.5) specified dynamics version, using GEOS5 meteorological analysis (2006-2009).
- MOZART gas-phase chemistry extended to include a better speciation of biogenic and anthropogenic SOA precursors
- SOA precursors emissions:
 - Biogenic MEGAN (Isop, apin, bpin, limon, myrc, sesq)
 - Anthropogenic RCP8.5 (benzene, toluene, xylene and alkanes)
 - Fire from FINN (benzene, toluene, xylene and alkanes)
 - Additional semi-volatile and intermediate volatility organics (S/IVOC) from anthropogenic and biomass burning emissions
- SOA species interact with clouds and the optical calculations

Results: Annual average SOA column burden

AOD 550nm: VBS - BASE

BASE SOA burden=0.66 Tg

Difference: VBS - BASE

VBS vs. BASE:

- Increased SOA burden in source regions (China, SE U.S., Europe, fire regions)
- Decreased SOA burden in the outflow regions

Results: Annual SOA budgets

VBS vs. BASE:

- Higher production and higher removals a more dynamic SOA system
- Updates in the yields alone leads to very high burden

VBS run: source contribution to SOA

% contribution

- Biogenic emissions are the largest source of SOA globally (although treatment of isoprene is work in progress)
- Anthropogenic sources dominate over China and India

Results: Comparison to previous studies

• Large difference in biomass burning

Results: SOA near the surface

Annual SOA burden (up to 1.5km) Comparison with the U.S. ($\mu g/m^2$ **IMPROVE** data (2005-2008) Organic Aerosol (µg/m³ Avg OBS= 2.78 4.0 BASE=1.98 R=0.49 VBS=2.27 R=0.46 3.0 BASE burden=0.24 Tg VBSNR=2.7 R=0.45 2PROD=1.1 R=0.62 2.0 1.0 0.0 VBS burden=0.36 Tg 12 02 04 08 09 01 03 05 10 ANIN Months 15 10 60N 5 1 30N 0.5 0.1 0 0 -0.1 -0.5 30S -1 -2 60S -5 BASE RS -10 90S

Results: Zonal average SOA (µg/kg)

.

BASE	VBS_NY: updated production only	VBS	
2PROD - BASE	VBS NY - BASE	VBS - BASE	µg/kg

µg/kg

Results: Zonal average Number Concentrations (#/cm³)

Comparisons with aircraft OA measurements

CAM5 VBS 1x1 : Comparisons with SEAC4RS SOA measurements

Summary and future work

Added a flexible VBS framework into CAM5 that includes updated yields and photolysis removal rates based on recent lab. data, and explicit chemistry

The new SOA approach leads to

- a more dynamic system (higher production, and higher removals),
- larger concentrations in the near source regions, and lower concentrations in the upper troposphere,
- Dominance of biogenic sources over BB
- Improved agreement with profile data
- Examine vertical gradients in OA with upcoming ATOM
- Revise Isoprene chemistry, and cloud chemistry
- Work on reducing the number of species for climate runs to 10 SOA, and 5 gas species.

Model evaluation with the U.S. IMPROVE data (2005-2008)

VBS_NY SOA burden=1.78 Tg

VBS vs. BASE:

- Increased SOA burden in source regions (China, SE U.S., Europe, fire regions)
- Decreased SOA burden in the outflow regions

Results: Annual average SOA column burden

Changes due to updated SOA production

VBS NY - BASE

Changes due to updated removals

15

10

5

1

0.5

0.1

0 -0.1 -0.5

> -1 -2

-5 -10

VBS – VBS NY

The overall difference

15

10

5

1

VBS - BASE

AOD 550nm: VBS - BASE

