## Predictability of the duration of La Niña

### Pedro DiNezio

University of Texas Institute for Geophysics (UTIG)

#### **CESM Winter Meeting**

February 9, 2016

Collaborators: C. Deser<sup>1</sup> and Y. Okumura<sup>2</sup>

<sup>1</sup>NCAR, <sup>2</sup>UTIG









### Multi-year La Niña events are very common



Adapted from Okumura and Deser 2011

## **Can we predict their duration?**

- Previous research has focused on El Niño
- Predicting the **onset** of La Niña is **trivial**:
  - They virtually always occur the year after El Niño.
- Predicting the termination of La Niña is very challenging:
  - Why some events last 2 years?
  - Is their duration predictable?

# Data and Methodology

- Long control simulation performed with CESM1
  - 1800 years long
  - Constant pre-industrial forcing
  - 1° atmosphere, 1° ocean (<sup>1</sup>/<sub>3</sub>° latitude on the equator)
  - Simulates realistic 2-yr La Nina
- Perfect-model prediction experiments with CESM1
  - 3 case studies
  - 20 members for each forecast ensemble
    - Initialized during:
      - Transition from El Nino to La Nina (18 month lead time)
      - Peak of the preceding El Nino (24 month lead time)
    - Each forecast run forward for 3.5 years.

### **CESM1 simulates realistic 2-year La Nina**



# Looking for predictors...

- Two main theories for the duration of ENSO events:
  - Delayed oscillator (Suarez and Schopf 1988; Battisti and Hirst 1989).
  - Recharge oscillator (Jin 1997).
- Both are based on the following idea:
  - Variations in the depth of equatorial thermocline contribute to:
    - The growth of ENSO events (Bjerknes feedback).
    - The decay of ENSO events, i.e. their duration (delayed thermocline feedback).

### Hypothesis: thermocline depth anomalies before the onset of La Niña determine its duration



### Hypothesis: thermocline depth anomalies before the onset of La Niña determine its duration



## **Case 1: weak predictor**



# Case 2: moderate predictor



# **Case 3: strong predictor**



## The return of La Nina is highly predictable 18 months in advance



# The spread of the forecasts is not sensitive to the initial conditions



#### Forecast initialized during discharge phase: moderate case

#### **Ensemble mean**



### Forecast initialized during discharge phase: moderate case + inactive IOD

**Ensemble mean** 



# The spread of the forecasts is sensitive to variability in the eastern Indian Ocean



### Models simulate too active IOD



### NCAR models are not the exception



Weller and Cai 2013

## Conclusions

- The return of La Niña is highly predictable in CESM1:
  - Controlled by the depth of thermocline before onset of La Nina.
  - Up to 18 month skillful prediction.
- Too active IOD may lead to unrealistically large spread in forecast
  - Disabling coupled variability over the eastern Indian
    Ocean reduces the forecast spread by 15%.

## **Open questions**

- Can CESM1's **perfect model** skill be realized in an actual forecast system?
- If a La Nina follows the current El Nino, could we predict its duration?





### Multi-year La Niña events are very common



Adapted from Okumura and Deser 2011



# Delayed thermocline feedback controls the termination of La Nina

Nonlinear and seasonally-dependent delayed thermocline feedback derived from CCSM4



### Asymmetry in the duration of El Niño and La Niña



Okumura and Deser 2010

### Predicting the return of La Niña is very challenging





**black line:** observed evolution of Nino-3.4 SST anomalies **coloured lines:** forecasts by different statistical models

O FSU REGR

UCLA\_TCD

## **Growth phase (Bjerknes feedback)**





## Decay phase (delayed thermocline feedback)



western boundary



### For instance, the return of the 2011-2012 La Niña

ENSO predictions initialized during summer of 2011



## [T]' approximates SST anomalies very well



Allows us to use the heat budget to diagnose processes driving ENSO SST anomalies

### Step 1: ENSO heat budget



### **Balanced heat budget on ENSO timescales**