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Suggestions From an Analytical but Nonlinear Model
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1. The very existence of an oscillating regime is due to a sufficient strong
radiative heating: the circulation that is required to balance the radiative
heating become so strong that it becomes unstable, resulting in a
backlash to the zonally symmetric state which itself is also unstable.

2. Further increases in the intensity of radiative heating results in
stronger oscillation.

Sun, D.-Z., 1997, Geophys. Res. Lett., 24, 2031-2034.
Liang, J., X.-O. Yang, and D.-Z. Sun 2012, J. Climate, 25, 7590-7606.
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Pattern and Amplitude of Oscillation in the
Model of Sun (1997) under
Different Intensities of Radiative Heating
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The Results from IPCC AR5

Response of ENSO to a Higher CO2: CMIP5 Results
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ENSO Asymmetry in CMIP5 Models

Box plot for Skewness
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ENSO Amplitude in CMIP5 Models

Box plot for variance
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Methodology: Dividing Models
Into Groups

Criteria: Group ROP45& RepsS&
Diff = Var(i) — Var(j) (Rcpss- His His
historial run or Rcp45-historical run) Group 0 0 0
Vc: STD of the 16-year moving  group 1 1 1
variance of the historical run for Group 2 P ;
each model

Group 3 0 1
If Diff > 1 Vc in Run/Model A: Group 4 0 -1
A Is Indexed 1; Group 5 1 0
If Diff <-1 VcinRun/Model A: Group 6 1 0
A->-1;

’ Group 7 1 1

else, O o

Group 8 -1 1



Table 1: number of models (or runs) in each group

By Runs By Models
Group

No. of runs Percent No. of models Percent

GO 30 39.5% 11 29.7%
Gl 18 23.7% 9 24.3%
G2 I 9.2% S 13.5%
G3 6 7.9% 3 8.1%
G4 7 9.2% 3 8.1%
G5 3 4.0% 2 5.4%
G 6 5 6.6% 4 10.8%



Variance and Skewness In the historical runs
of the models in GO and G1

(by models)
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Summary

Stability analysis of a lower order model suggests that the very existence of an
oscillating regime requires a sufficient strong radiative heating. Further increases in
the intensity of heating results in stronger and more asymmetric oscillation.

A common deficiency in IPCC AR5 Models is noted: they fail to produce strongly
asymmetric oscillation as that had occurred in the observations, even when the
amplitude of the oscillation in the models is as strong as or even much stronger
than the observations.

While on average, results from AR5 models seem to suggest a muted response of
ENSO to CO2 increases, but the number of models that predict a consistent positive
response of ENSO to different levels of increases of CO2 accounts almost of ¥4 of
the total models and is comparable to the numbers of models that predict a
consistent muted response.

ENSO simulated in the historical runs of the models that predict a consistent positive
response of ENSO are found to be weaker in amplitude and stronger in asymmetry
(and are thus more comparable to the observations in amplitude and asymmetry)
than ENSO in the models that predict a muted response.

The results underscore the importance of nonlinearity (and realism of simulated
ENSO) in determining the response of ENSO to higher CO2 forcing.
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Response of ENSO to Higher CO2 Forcing
Results from Two NCAR Models
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An Analytical Model for the ENSO System

Upper
ocean

We§t/ East

Sun, D.-Z., 1997, Geophys. Res. Lett., 24, 2031-2034.
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An Analytical Model for the ENSO System
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Why Do We Have ENSO Events?
A Close Analogy with the Malkus’s Waterwheel
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The Model Captures the ENSO Asymmetry

Observed Asymmetry in Variations in Simulated Asymmetry in Variations
Nino3 SST in Eastern Equatorial Pacific SST

by a Nonlinear Box Model
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Dependence of Sensitivity on the Amplitude
—An Example

Liang, J., X.-O. Yang, and D.-Z. Sun 2012, J. Climate, 25, 7590-7606.
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ENSO Response to Higher CO2
Results from G1
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ENSO Skewness Response To Higher CO2
Results from G1
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ENSO Response to Higher CO2 Forcing
Results From GO0 and G1—Box Plots
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Variances for all groups

By runs
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Skewness for all groups

by runs
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Variance Responses from Individual

Runs That Fall to G1
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Variance Response from Individual
Models in Group 1 - ensemble
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Variance Response from Individual
Models from Group 0 - ensemble
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Variance Response from Individual
Models from GO (left) and G1(right)
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Variances in the Historical Runs of The
Models in GO and G1
(by models)

Variance
2.5

1.5}

Observed 1}
Level I

0.5¢

GO0 G



Variance and Skewness in the Historical
Runs of Models In G1 and GO

(by runs)
Variance Skewness
2.5 1
2t o8t
0.6}
1.5¢ _
04}
j _02f
Ob:s |
0.5}
-0.2¢
: G0 G 0.4 - -

Obs.



Variance Response from Individual Runs
that Fall in GO

Identifier
1 Group Mean
2 ACCESS1-0_R1
3 CCSM4_R2
4 CCSM4_R4
5 CESM1-BGC_R1
Variance 6 CESM1-CAM5_R3
25 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 7 CSIRO-Mk3-6-0_R1
LA . 8 CSIRO-MKk3-6-0_R3
2F (! - 9 CSIRO-Mk3-6-0_R5
o o©° 10 CSIRO-Mk3-6-0_R6
15k 8 o - 11 CSIRO-MK3-6-0_R7
12 CSIRO-Mk3-6-0_R9
1 o o P 13 CSIRO-MK3-6-0_R10
e ; o, o© 8 g 14 EC-EARTH_R12
..... = J S S NP S WO YUY _ B . 15 FIO-ESM_R1
0.5 0 $¢% §o¥y : 0 ’ 9 se } 16 FIO-ESM_R?2
] 0 17 FIO-ESM_R3
OIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 18 GISS-E2-H R1P2
1234567 8 910111213141516171819202122232425262728293031 19 GISS-E2-R_R1P3
20 HadGEM2-ES_R1
21 HadGEM2-ES_R4
22 IPSL-CM5A-LR_R2
23 IPSL-CM5A-LR_R4
24 NorESM1-M_R1
25 NorESM1-ME_R1
26 bcc-csmi1-1-m_R1
27 BNU-ESM_R1
28 CanESM2_R1
29 CanESM2_R5
30 CNRM-CM5_R1

w
[ue

MIROC-ESM_R1



Magnitude (dE)

Filter design

e Butterworth filter
e 10— year

MWagnitude Fesponse (dB)

0 002004006008 01 012014 016 018 02
Mormalized Freguency (=m rad/sample)

Magnitude (dE)

-50

-100

-150

-200¢

-250

Magnitude Response (dE)

0 002004006008 01 012 014 016 018 0.2

Mormalized Freguency (=m rad/sample)




251

1.5

[1R-13

Variance of filtered data

All runs

High-pass Variance
+
T i
: +
! -
| —
! |
! |
I
T -
==
*
I' I
| |
| |
L L -
cp85  rcpd5  His

16+

14

12+

08r

06

04t

0.2

Low-pass Variance

T

I

I

I

I

*

%
%
%
1 %\

i 1

I %

I 1

LN '
_ %

x| +
. = e, . _I
4 -
rep8a repds His

25¢+

15+

05

Ensemble

High-pass variance

14

*® 04

0.2

1.6+

1.2+

0.8f
0.6}

Low-pass variance

-
I
I
|
|
|
LA
\
y
Y
—
| !
! n
| T }
L % |
i L .
‘*_ +
T ik
rcpBs rcpds His




or

04r

0af

0.2}

A4t

-1.7

Skewness of filtered data

All runs

High-pass Skewness

T _ —
| |
| |
| |
| | x
= |- L
i |
| |
I I
I I n
| |
.
cp86  rcpdd His

]!

-3

Low-pass Skewness

or

04r

0af

0.2}

A4t

-1.7

Ensemble

High-pass skewness

cp86  rcpdd His

-2t

Low-pass skewness

o
T
|

r B ]

_
M‘-\. | o
-
I E"" T
|
|
|

rcp;ﬁﬁ rl:pl-45 His




ENSO Asymmetry in Models and Obs.
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Asymmetry in the Oscillation in the
Model of Sun (1997)
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ENSO Asymmetry in CMIP5 Models (20C)
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ENSO Amplitude and Asymmetry in CMIP5 Models (20C)
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Summary

A common deficiency in the State-of-the-Art Models collected in CMIP5 is noted:
they fail to produce strongly asymmetric oscillation as that had occurred in the
observations, even when the amplitude of the oscillation in the models is as strong
as or even much stronger than the observations.

While on average, results from CMIP5 models seem to suggest a muted response of
ENSO to a high CO2, but 1/3 of models that have inconsistent responses to
different levels of increase of CO..

Among the models that have a consistent response to different levels of increase of
CO2, the two largest groups are the one (GO0) that the member models have a muted
response and the one (G1) that the member models tend to produce a positive
response and the one (G0). The number of models of these two group accounts for
respectively 30% and 25% of the total models of CMIP5.

ENSO events simulated in the historical runs (20C runs) by the models in G1 are
found to be weaker in amplitude and stronger in asymmetry than GO (and thus are
more comparable to observations ). This result underscores the importance of
nonlinearity (and realism of simulated ENSO) in determining the response of ENSO
to higher CO2 forcing.
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