#### The Response of ENSO Events to Higher CO<sub>2</sub> Forcing: Role of Nonlinearity

#### De-Zheng Sun, Jiabing Shuai, and Shao Sun

CIRES, University of Colorado & Earth System Research Laboratory, NOAA http://www.esrl.noaa.gov/psd/people/dezheng.sun/



# Outline

- 1. Suggestions From an Analytical but Nonlinear Model
- 2. The Average Results from IPCC AR5 Models
- 3. A Common Deficiency in IPCC AR5 Models
- 4. A New Methodology in Analyzing IPCC AR5 Models
- 5. The Results From This New Methodology
- 6. Conclusions

#### Suggestions From an Analytical but Nonlinear Model



1. The very existence of an oscillating regime is due to a sufficient strong radiative heating: the circulation that is required to balance the radiative heating become so strong that it becomes unstable, resulting in a backlash to the zonally symmetric state which itself is also unstable.

### 2. Further increases in the intensity of radiative heating results in stronger oscillation.

Sun, D.-Z., 1997, Geophys. Res. Lett., 24, 2031-2034.

Liang, J., X.-Q. Yang, and D.-Z. Sun 2012, J. Climate, 25, 7590-7606.

### Pattern and Amplitude of Oscillation in the Model of Sun (1997) under Different Intensities of Radiative Heating



Liang, J., X.-Q. Yang, and D.-Z. Sun 2012, J. Climate, 25, 7590-7606.

Pattern and Amplitude of Oscillation under Two Different Intensities of Radiative Heating (Model)

Pattern and Amplitude of Oscillation over 1940-1970 and the later Period 1970-2000



### The Results from IPCC AR5

Response of ENSO to a Higher CO2: CMIP5 Results



#### ENSO Asymmetry in CMIP5 Models

#### Box plot for Skewness



#### ENSO Amplitude in CMIP5 Models

Box plot for variance



# Methodology: Dividing Models into Groups

### • Criteria:

- Diff = Var(i) Var(j) (Rcp85historial run or Rcp45-historical run)
- Vc: STD of the 16-year moving variance of the historical run for each model
- If Diff > 1 Vc in Run/Model A: A is Indexed 1;
- If Diff < -1 Vc in Run/Model A: A-> -1;
- else, 0

| Group   | Rcp45 &<br>His | Rcp85 &<br>His |
|---------|----------------|----------------|
| Group 0 | 0              | 0              |
| Group 1 | 1              | 1              |
| Group 2 | -1             | -1             |
| Group 3 | 0              | 1              |
| Group 4 | 0              | -1             |
| Group 5 | 1              | 0              |
| Group 6 | -1             | 0              |
| Group 7 | 1              | -1             |
| Group 8 | -1             | 1              |
|         |                |                |

#### Table 1: number of models (or runs) in each group

| By Runs |             | By M    | lodels        |         |
|---------|-------------|---------|---------------|---------|
| Group   |             |         |               |         |
|         | No. of runs | Percent | No. of models | Percent |
| G 0     | 30          | 39.5%   | 11            | 29.7%   |
| G 1     | 18          | 23.7%   | 9             | 24.3%   |
| G 2     | 7           | 9.2%    | 5             | 13.5%   |
| G 3     | 6           | 7.9%    | 3             | 8.1%    |
| G 4     | 7           | 9.2%    | 3             | 8.1%    |
| G 5     | 3           | 4.0%    | 2             | 5.4%    |
| G 6     | 5           | 6.6%    | 4             | 10.8%   |

### Variance and Skewness in the historical runs of the models in G0 and G1 (by models)



### Summary

- Stability analysis of a lower order model suggests that the very existence of an oscillating regime requires a sufficient strong radiative heating. Further increases in the intensity of heating results in stronger and more asymmetric oscillation.
- A common deficiency in IPCC AR5 Models is noted: they fail to produce strongly asymmetric oscillation as that had occurred in the observations, even when the amplitude of the oscillation in the models is as strong as or even much stronger than the observations.
- While on average, results from AR5 models seem to suggest a muted response of ENSO to CO2 increases, but the number of models that predict a consistent positive response of ENSO to different levels of increases of CO2 accounts almost of ¼ of the total models and is comparable to the numbers of models that predict a consistent muted response.
- ENSO simulated in the historical runs of the models that predict a consistent positive response of ENSO are found to be weaker in amplitude and stronger in asymmetry (and are thus more comparable to the observations in amplitude and asymmetry) than ENSO in the models that predict a muted response.
- The results underscore the importance of nonlinearity (and realism of simulated ENSO) in determining the response of ENSO to higher CO2 forcing.

#### Response of ENSO to Higher CO2 Forcing Results from Two NCAR Models

![](_page_12_Figure_1.jpeg)

#### Variance and Skewness of ENSO in Two NCAR Models (filtered data)

![](_page_13_Figure_1.jpeg)

#### Response of ENSO to Higher CO2 Forcing Results from Two NCAR Models

![](_page_14_Figure_1.jpeg)

Skewness

#### An Analytical Model for the ENSO System

![](_page_15_Figure_1.jpeg)

Sun, D.-Z., 1997, Geophys. Res. Lett., 24, 2031-2034.

#### An Analytical Model for the ENSO System

$$\frac{dT_{1}}{dt} = c(T_{e} - T_{1}) + sq(T_{2} - T_{1})$$

$$\frac{dT_{2}}{dt} = c(T_{e} - T_{2}) + q(T_{sub} - T_{2})$$

$$q = \frac{\alpha}{\alpha} (T_{1} - T_{2})$$
Nonlinear
$$T_{sub} = \Phi(-H_{1} + h_{2}')$$

$$\Phi(z) = T_{e} - \frac{T_{e} - T_{b}}{2} (1 - \tanh(\frac{z + z_{0}}{H^{*}}))$$

$$h_{2}' - h_{1}' = -\frac{H_{1}}{H_{2}} H \frac{\alpha}{b^{2}} (T_{1} - T_{2})$$

$$\frac{1}{r} \frac{dh_{1}'}{dt} = -h_{1}' + \frac{H_{1}}{2H_{2}} H \frac{\alpha}{b^{2}} (T_{1} - T_{2})$$

-Sun -

Eas

t

West

Sun 1997

#### Why Do We Have ENSO Events? A Close Analogy with the Malkus's Waterwheel

![](_page_17_Figure_1.jpeg)

#### The Model Captures the ENSO Asymmetry

Observed Asymmetry in Variations in Nino3 SST

Simulated Asymmetry in Variations in Eastern Equatorial Pacific SST by a Nonlinear Box Model

![](_page_18_Figure_3.jpeg)

![](_page_18_Figure_4.jpeg)

### Dependence of Sensitivity on the Amplitude —An Example

![](_page_19_Figure_1.jpeg)

Liang, J., X.-Q. Yang, and D.-Z. Sun 2012, J. Climate, 25, 7590-7606.

### ENSO Response To Higher CO2 Results from G1

Variance Skewness 0.7 2 0.6 1.8 0.5 1.6 0.4 1.4 0.3 1.2 0.2 -00 1 0.1 0.8 0 0.6 -0.1 0.4 -0.2 -0.3 0.2 -0.4 0 rcp85 rcp45 his rcp85 rcp45 his

### ENSO Response to Higher CO2 Results from G1

![](_page_21_Figure_1.jpeg)

### ENSO Skewness Response To Higher CO2 Results from G1

![](_page_22_Figure_1.jpeg)

#### ENSO Response to Higher CO2 Forcing Results From G0 and G1—Box Plots

![](_page_23_Figure_1.jpeg)

# Variances for all groups

![](_page_24_Figure_1.jpeg)

# Skewness for all groups

![](_page_25_Figure_1.jpeg)

### Variance Responses from Individual Runs That Fall to G1

![](_page_26_Figure_1.jpeg)

| Identifier | Run Name         |
|------------|------------------|
| 1          | Group Mean       |
| 2          | ACCESS1-3_R1     |
| 3          | CESM1-CAM5_R1    |
| 4          | CESM1-CAM5_R2    |
| 5          | CMCC-CMS_R1      |
| 6          | CSIRO-Mk3-6-0_R2 |
| 7          | CSIRO-Mk3-6-0_R4 |
| 8          | EC-EARTH_R2      |
| 9          | EC-EARTH_R3      |
| 10         | EC-EARTH_R6      |
| 11         | EC-EARTH_R7      |
| 12         | EC-EARTH_R9      |
| 13         | EC-EARTH_R10     |
| 14         | EC-EARTH_R14     |
| 15         | MIROC5_R3        |
| 16         | MPI-ESM-LR_R1    |
| 17         | MPI-ESM-LR_R3    |
| 18         | MPI-ESM-MR_R1    |
| 19         | MRI-CGCM3_R1     |

### Variance Response from Individual Models in Group 1 - ensemble

![](_page_27_Figure_1.jpeg)

### Variance Response from Individual Models from Group 0 - ensemble

![](_page_28_Figure_1.jpeg)

| Identifier |                |
|------------|----------------|
| 1          | Group Mean     |
| 2          | ACCESS1-0      |
| 3          | CESM1-BGC      |
| 4          | FIO-ESM        |
| 5          | GISS-E2-H-r1p2 |
| 6          | GISS-E2-R-r1p3 |
| 7          | NorESM1-M      |
| 8          | NorESM1-ME     |
| 9          | bcc-csm1-1-m   |
| 10         | BNU-ESM        |
| 11         | CNRM-CM5       |
| 12         | MIROC-ESM      |

### Variance Response from Individual Models from G0 (left) and G1(right)

![](_page_29_Figure_1.jpeg)

### Variances in the Historical Runs of The Models in G0 and G1 (by models)

![](_page_30_Figure_1.jpeg)

### Variance and Skewness in the Historical Runs of Models in G1 and G0 (by runs)

![](_page_31_Figure_1.jpeg)

### Variance Response from Individual Runs that Fall in G0

![](_page_32_Figure_1.jpeg)

| dentifier |                   |
|-----------|-------------------|
| 1         | Group Mean        |
| 2         | ACCESS1-0_R1      |
| 3         | CCSM4_R2          |
| 4         | CCSM4_R4          |
| 5         | CESM1-BGC_R1      |
| 6         | CESM1-CAM5_R3     |
| 7         | CSIRO-Mk3-6-0_R1  |
| 8         | CSIRO-Mk3-6-0_R3  |
| 9         | CSIRO-Mk3-6-0_R5  |
| 10        | CSIRO-Mk3-6-0_R6  |
| 11        | CSIRO-Mk3-6-0_R7  |
| 12        | CSIRO-Mk3-6-0_R9  |
| 13        | CSIRO-Mk3-6-0_R10 |
| 14        | EC-EARTH_R12      |
| 15        | FIO-ESM_R1        |
| 16        | FIO-ESM_R2        |
| 17        | FIO-ESM_R3        |
| 18        | GISS-E2-H_R1P2    |
| 19        | GISS-E2-R_R1P3    |
| 20        | HadGEM2-ES_R1     |
| 21        | HadGEM2-ES_R4     |
| 22        | IPSL-CM5A-LR_R2   |
| 23        | IPSL-CM5A-LR_R4   |
| 24        | NorESM1-M_R1      |
| 25        | NorESM1-ME_R1     |
| 26        | bcc-csm1-1-m_R1   |
| 27        | BNU-ESM_R1        |
| 28        | CanESM2_R1        |
| 29        | CanESM2_R5        |
| 30        | CNRM-CM5_R1       |
| 31        | MIROC-ESM R1      |

# Filter design

- Butterworth filter
- 10 year

![](_page_33_Figure_3.jpeg)

### Variance of filtered data

![](_page_34_Figure_1.jpeg)

### Skewness of filtered data

![](_page_35_Figure_1.jpeg)

#### Ensemble

![](_page_35_Figure_3.jpeg)

### ENSO Asymmetry in Models and Obs.

![](_page_36_Figure_1.jpeg)

# Asymmetry in the Oscillation in the Model of Sun (1997)

![](_page_37_Figure_1.jpeg)

Liang, J., X.-Q. Yang, and D.-Z. Sun, 2012, J. Climate, 25, 7590-7606.

#### ENSO Asymmetry in CMIP5 Models (20C)

![](_page_38_Figure_1.jpeg)

Skewness of Nino3 SST

#### ENSO Amplitude and Asymmetry in CMIP5 Models (20C)

![](_page_39_Figure_1.jpeg)

# Summary

- A common deficiency in the State-of-the-Art Models collected in CMIP5 is noted: they fail to produce strongly asymmetric oscillation as that had occurred in the observations, even when the amplitude of the oscillation in the models is as strong as or even much stronger than the observations.
- While on average, results from CMIP5 models seem to suggest a muted response of ENSO to a high CO2, but 1/3 of models that have inconsistent responses to different levels of increase of CO<sub>2</sub>.
- Among the models that have a consistent response to different levels of increase of CO2, the two largest groups are the one (G0) that the member models have a muted response and the one (G1) that the member models tend to produce a positive response and the one (G0). The number of models of these two group accounts for respectively 30% and 25% of the total models of CMIP5.
- ENSO events simulated in the historical runs (20C runs) by the models in G1 are found to be weaker in amplitude and stronger in asymmetry than G0 (and thus are more comparable to observations). This result underscores the importance of nonlinearity (and realism of simulated ENSO) in determining the response of ENSO to higher CO2 forcing.