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The problem of internal variability
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Dynamical adjustment explained (in a nutshell) %\R

Trying to estimate the dynamical components of a surface air
temperature (SAT) field
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raw field

1. Select a monthly mean field (SAT and SLP) from
observations

2. Search analogues of SLP in detrended
observations (“no” forcing)

3. Reconstruct the historical SLP pattern from a
linear combination of the closest analogues
found in the detrended observations

4. Use the same linear coefficients to reconstruct
SAT, now using the SLP from the respective
month in the observations

5. This tells us how much of the SAT field comes L=
from SLP variability, i.e., dynamics; the residual is |
assumed to be an estimate of ‘thermodynamics’
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Source of analogues?
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Application: record summer in Europe, August 2003 SAR
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North America JIA >1 o temperatures
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Application: North America, February 2015
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North America DJF <-1 o temperatures
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Application: increased signal-to-noise
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Application: increased signal-to-noise
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Conclusions

e Dynamical adjustment of observations and model simulations

* Event attribution possible, but also inceased signal-to-noise for climate
change studies

* Further disection into forced dynamics and forced thermodynamics
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e Dynamical adjustment of observations and model simulations

* Event attribution possible, but also inceased signal-to-noise for climate
change studies

* Further disection into forced dynamics and forced thermodynamics

Caveats and further steps:
e Direction of forcing unknown (SLP -> SAT or SAT -> SLP?)

e Synoptic time scales (e.g., 5-day means) and lead-lag correlations might
help to get at that

e Convolution with other factors (e.g., precipitation)
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