Validation of modeled ice dynamics of the Greenland Ice Sheet using historical forcing

M. Hoffman¹, S. Price¹, I. Howat², J. Bonin³, D. Chambers³, T. Neumann⁴, J. Guerber⁴, I. Tezaur⁵, J. Lenaerts⁶, W. Lipscomb¹, M. Perego⁵, J. Saba⁴, R. Tuminaro⁵, A. Salinger⁵

¹Los Alamos National Laboratory ²Ohio State University ³University of South Florida ⁴NASA Goddard Space Flight Center ⁵Sandia National Laboratories ⁶Institute for Marine and Atmospheric research, Utrecht (IMAU)

Supported by DOE Office of Science ASCR & BER through SciDAC Model simulations conducted on Hopper and Titan at NERSC and OLCF

Motivation

There are currently ~2 decades of large-scale satellite observations of Greenland ice sheet geometry change:

ICESat1:	2003 – 2009
GRACE:	2002 – 201? (ongoing)

Future missions will extend these observational time series:

ICESat2:	2017 – 20??
GRACE "follow-on":	2017 – 20??
GRACE2	2020's - ?

These data can be used for ice sheet model *validation***, but no framework currently exists for doing so.

** validation: How well do our models represent the real ice sheet?

GRACE measures changes in mass

Operational: 2003-present

GRACE resolves subannual variations

GRACE has coarse spatial resolution

ICESat measures surface elevation

Operational: 2003-2008

ICESat has fine spatial resolution but coarse temporal resolution (91 day exact repeat)

elevation change requires processing

ice thickness (or mass) change requires more processing

Forcing: SMB, 1991-2012

- RACMO2 van Angelen et al., Surv. Geophys., 2014
- 11 km grid, interpolated to 1km ice sheet model grid (no downscaling)
- monthly temporal resolution
- applied as anomalies

Mean SMB calculated by RACMO compared to observations (circles)

Forcing: Outlet Glacier Flux, 1991-2012

- InSAR ice velocity + IceBridge ice thickness Enderlin et al. GRL 2014
- mean annual flux at grounding line
- 22 of largest outlet glaciers
- 1km grid resolution
- applied as anomalies

Flux gate locations

Models

CISM 2.0 *http://github.com/CISM/cism* Velocity solvers used:

- **DIVA**: parallel, FEM, 2d, first-order Stokes approximation (Goldberg JGlac 2011)
- **FELIX-FO:** parallel, FEM, 3d, first-order Stokes approximation (Tezaur et al. GMD 2014)
 - here, coupled to CISM 2.0 as external dycore

Spin-up and initialization

- 1km regular grid using BedMachine (Morlighem et al. Nat. Geo. 2014) geometry
- 350 ka thermal spin-up with fixed geometry using DIVA
- formal optimization of basal sliding coefficient using FELIX (Perego et al. JGR 2014)
- Flux correction applied to hold equilibrium with climatic SMB

1 km res. initial condition: surface speed

Results

Model runs conducted:

- 1. SMB-only: forced from 1991-2012 by RACMO SMB
- **2. SMB+Flux**: forced " ... " plus outlet glacier flux time series, 2000-2012
- a. 4 km resolution
- b. 1 km resolution

Evaluate model performance relative to observations: ICESat : ice sheet surface elevation GRACE : mass trends

Calculate *metrics* to quantify model performance (e.g., to gauge improvement as new dynamics, physics, boundary conditions, higher-resolution are added)

Model Post Processing

LANL M

Model Post-Processing

- * Convert model coords. from polar stereo. to lat., lon.
- * Shift vertical datum from EIGEN-GL04C (Bamber DEM) to WGS-84
- * Write annual model output to text file of lat., Ion. and elev. (ICESat) or thickness (GRACE) at each grid point
- * Text files of elevation for ICESat --> NASA GSFC for processing
- * Text files of thickness for GRACE -->Univ. of S. Florida for processing

NASA Goddard

ICESat Processing

- * GIMP 90-m DEM mask used to filter GLAS rel. 64 data. GLAS points excluded ...
 - * if not within GIMP mask
 - * if reflectivity < 0.0375
 - * if waveform stndev > 0.0375 volts
 - * if | GIMP GLAS | > 200 m
- * Annual model output compared to elevations from fall ICESat campaign of same year
- * Model grid points interpolated to nearest GLAS footprint

Univ. South Florida

GRACE Processing

- * Model lat., lon. ice thickness binned at 1/2 x 1/2 degree
- * Thickness in each bin converted to cm water equiv.
- * Binned data transformed to 60x60 spherical harmonics
- * Result is model "seen" at equiv. resolution to GRACE
- * Harmonics mapped back to 1/2 x 1/2 degree bins for plotting
- * No smoothing or other GRACE post-processing applied

Goal: automated web service for all steps

Results: ICESat

Shown and discussed are surface elevation differences for 2003 (other years through 2009 similar) for ...

- Maps of ICESat minus model elevations
- Scatter-plots of ICESat minus model elevations
- Histograms of ICESat minus model elevations

SMB-Only 4 km

Results: GRACE

GRACE, RACMO, & Model: year-on-year mass changes: 2005

cm water

Future Work

Observations

- clean up existing processing software
- decide on / support output of standard metrics
- automate processing (internet based service)
- support other datasets (NASAATM, OIB, ERS)
- account for seasonal and longer-term firn effects

Sim. 3: Example of flux forcing (Jakobshavn Isbrae)

Thickness change rates

