

Anisotropic Mesoscale **Eddy Parameterization** for Shear Dispersion

Scott J. Reckinger* Baylor Fox-Kemper^{+,++} Scott Bachman++ Gokhan Danabasoglu** John Truesdale**

Frank Bryan**

- ⁺ Brown University
- ++ Cambridge Univ. ** NCAR

CESM OMWG Meeting February 9th, 2016 Boulder, CO

Flow Viz – Solid Body Rotation

Mesoscale Eddy Parameterization

- Parameterizations
 previously used isotropic
 diffusivity K
- Extend for anisotropy*
 - Principal axis alignment
 - $\frac{\kappa_{\rm major}}{\kappa_{\rm minor}}$
- What will be gained?
 - Shear dispersion
 - PV-gradient suppression
 - Better ventilation of passive and biogeochemical tracers

BROWN Anisotropic Mesoscale Eddy Parameterization Scott J. Reckinger

CESM OMWG 2016

*Bachman & Fox-Kemper (2013) ^{ization} *Fox-Kemper et al (2013)

Mesoscale Eddy Parameterization

- Baroclinic instability energizes mesoscale eddies by converting available potential energy to kinetic energy, <u>anisotropically</u> mixing along isopycnals and flattening isopycnal slopes.
- Reynolds averaged tracer equation with closure:

CESM OMWG 2016

4

Eddy Diffusivity Tensor

$$\partial_t \phi + \vec{u} \cdot \nabla \phi = \nabla \cdot \left(\bar{\vec{K}} + \bar{\vec{A}} \right) \cdot \nabla \phi$$

Eddy Advective Tensor

$$\partial_t \phi + \vec{u} \cdot \nabla \phi = \nabla \cdot \left(\bar{\bar{K}} + \bar{\bar{A}} \right) \cdot \nabla \phi$$

Eddy Transport Tensor

$$\partial_t \phi + \vec{u} \cdot \nabla \phi = \nabla \cdot \left(\bar{\bar{K}} + \bar{\bar{A}} \right) \cdot \nabla \phi$$

Anisotropy: Shear Dispersion

Anisotropic Eddy Transport Tensor

$$\partial_t \phi + \vec{u} \cdot \nabla \phi = \nabla \cdot \left(\bar{\bar{K}} + \bar{\bar{A}} \right) \cdot \nabla \phi$$

Anisotropic GM/Redi

Investigate sensitivity to anisotropy...

Drifter Observation Diffusivity Tensor

- Principal axis alignment
 - Major axis aligned zonally away from boundary currents
 - Major axis aligned with the flow near boundary currents
- $\kappa_{\rm major}/\kappa_{\rm minor}$
 - > 16 in equatorial region
 - Typical ratio is ≈ 5

*Fox-Kemper et al (2013) Anisotropic Mesoscale Eddy Parameterization

Scott J. Reckinger CESM OMWG 2016

Hi-res Diagnosed Tensor

 $\kappa_{\rm major}$

 $\kappa_{\rm minor}$

- 0.1 degree POP2 with 9 passive tracers (various orientation restoring)*
- Diffusivities calculated using least-squares
- Tensor applied statically in 1-degree tests (CORE-forced, 5 cycles)

BROWN Anisotropic Mesoscale Eddy Parameterization & Fox-Kemper (2013)

Scott J. Reckinger CESM OMWG 2016

*Fox-Kemper et al $(2013)^{12}$

Summary of Numerical Experiments

- Community Earth System Model (CESM1.2)
 - CORE 62-year interannual forcing (GIAF compset)*
 - 1° resolution (gx1v6 grid)
 - 5.75 cycle spin-up, branch for 5.25 cycles, and inject
 CFC's for final 1.25 cycles.

Hi-res Diagnosed Tensor Study

Major Axis Alignment Study

N² parameterization for minor, ratio=5

BROWN Anisotropic Mesoscale Eddy Parameterization Scott J. Reckinger CESM OMWG 2016

Major Axis Alignment Study

Anisotropic GM/Redi

Investigate sensitivity to anisotropy...

pCFC11 bias for case bass at z=483m

-0.5

Mean=-2.687e+01 RMS=4.530e+01 Max=1.487e+02 Min=-2.161e+02

pCFC11 bias for case flow at z=483m

 $^{-0.3}$ $^{-0.2}$ $^{-0.1}$ $^{-0.1}$ $^{0.1}$ $^{0.1}$ $^{0.2}$ $^{0.3}$ $^{0.3}$ Mean=1.336e-01 RMS=1.705e-01

⁻⁶⁰ ⁻⁴⁰ ⁻²⁰ ⁰ ⁰ ²⁰ ⁰ ²⁰ ⁴⁰ ⁶⁰ ⁸⁰ ⁸⁰ Mean=1.439e+01 ²⁰ RMS=3.507e+01 temp bias - flow - a01e

 $^{-1.5}$ $^{-1}$ $^{-0.5}$ $^{0.5}$ $^{0.5}$ 1 RMS=5.329e⁻⁰¹ salt bias - flow - a01e

Along WOCE Transect

Map for a01e

Anisotropy drastically reduces biases: pCFC by 24% Temp by 48% Salinity by 63%

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 Mean=7.972e-02 RMS=1.618e-01 -0.4

pcfc bias - flow - a16n,003a

Along WOCE Transect

Map for a16n₂003a

Anisotropy also reduces biases in equatorial Atlantic

Mixed Layer Depth [Annual, Winter]

Anisotropic: ratio=5 — N² isotropic

long_c120_GIAF_g16_flow - long_c120_GIAF_g16_long_c120_GIAF_g16_flow - long_c120_GIAF_g16_ba

Anisotropy...

-deepens MLD in Southern Ocean (where control is too shallow)
-shallows MLD in North Atlantic (where control is too deep)
-reduces winter mean rms bias 15%
-reduces annual mean rms bias 18%

Ideal Age and Oxygen Minimum Zones N² isotropic N² isotropic smth. diag. ratio

IAGE for case bass at z=483m

80 60 40 20 0 -20 -40 -60 -80 200 250 300 350 100 150 50

IAGE for case bass at z=985m

200 250 300 350 50 150 100 IAGE bias for case diah at z=985m

₂₀ younger ^o than cntl -20 $_{-40}$ red = older -60 than cntl

OMZ are ventilated 20 with strong along-flow -20 diffusion (anisotropy)

150 200 250 300 100

(A)MOC Sensitivity to Anisotropy

5.0

6.0

90°S

60°S

30°S

0°

30°N

60°N

90°N

60°S

90°S

30°S

0°

30°N

60°N

90°N

Anisotropic: ratio=5 TOTAL MOC (GLOBAL) long c120 GIAF g16 flow [653-682] 60 0.0 48 40 0.5 32 24 1.0 HL (km) 2.0 3.0 16 8 0 -8 -16 -24 4.0 -32 -40 5.0 -48 6.0 -60 90°S 60°S 30°S 0° 30°N 60°N 90°N TOTAL MOC (ATLANTIC) long c120 GIAF g16 flow [653-682] 60 0.0 48 40 32 24 16 8 0 -8 -16 -24 4.0 -32

-40

-48

-60

Summary of Numerical Experiments

- Community Earth System Model (CESM1.2)
 - CORE 62-year interannual forcing (GIAF compset)*
 - 1° resolution (gx1v6 grid)
 - 5.75 cycle spin-up, branch for 5.25 cycles, and inject
 CFC's for final 1.25 cycles.

Minor Diffusivity Reduction

Minor Diffusivity Reduction

Conclusions and Future Work

- Sensitivity to anisotropy:
 - <u>Alignment</u>: high sensitivity; flow-alignment performs best (reduction in CFC, T, & S bias) and is justified by anisotropic transport mechanisms (shear dispersion, across-jet suppression, etc.).
 - <u>Diffusivity ratio</u>: with N² for minor diffusivity, constant ratios of 2.5 and 5 reduce biases, but 10 is too large. Spatial variability using hi-res diagnosis or shear dispersion parameterization improves BGC ventilation.
 - <u>(A)MOC</u>: high sensitivity; large bias reductions in the North Atlantic despite suppression of AMOC and global mean temperature drift, which can be corrected through minor diffusivity
 - <u>MLD</u>: Southern Ocean deepening; North Atlantic shallowing; rms bias reduction.
- Tuned shear dispersion parameterization (a and κ_{minor}) must be tested for centuries-long run
- Better background diffusivity, κ ? Minor suppression κ_{minor} ?

Anisotropic Mesoscale Eddy Parameterization

Scott J. Reckinger CESM OMWG 2016

