OMWG Meeting Boulder, CO Feb 9, 2016

# Evaluation of CESM ocean-ice hindcast experiments forced by JRA55 data

Steve Yeager, Who Kim, Justin Small, Gokhan Danabasoglu, Bill Large, and Laura Landrum

NCAR, Boulder, Colorado, USA





# Outline

- What is JRA55?
- Experiment description
- Simulation spin-up
- Mean state characteristics
- Interannual variability

#### JRA55-based surface atmospheric data set for forcing ocean—sea-ice models

- Japanese 55-year Reanalysis (JRA55 or "JRA-GOGO") is a new atmospheric reanalysis from the Japan Meteorological Agency (JMA)
  - 1958-present, committed to near real-time updates
  - 55km resolution, 3-hourly data
  - Kobayashi et al, 2015, J. Meteorol. Soc. Japan, doi: 10.2151/jmsj.2015-001
- Bias adjustment needed for ocean/sea-ice modelling (as done for CORE and DRAKKAR projects) led by Hiroyuki Tsujino (JMA-MRI) as part of OMDP-JRA55 collaborative effort initiated at Jan2015 Grenoble meeting.
- Intended for use in "OMIP-phasell" of CMIP6
- <u>Timeline</u>: version1.0 in mid-March; documentation of data set in June/July; documentation of CORE/JRA55 simulation comparison by end of year
- For detailed information, see presentations from Jan2016 OMDP meeting in Yokohama:

http://www.clivar.org/omdp/japan2016

#### JRA55-based surface atmospheric data set for forcing ocean—sea-ice models

- *Version 0.0*: JRA-55 Product (when this name is useful)
- Version 0.1: Unadjusted JRA-55 on regular TL319 grid
  - Zonally interpolated from the (original) reduced TL319 grid
  - 2 m temp and humidity is shifted to 10 m using surface roughness of JRA-55
    10 m values are adjusted for v0.2
- *Version 0.2*: Adjustment on version 0.1 (Mar 2015)
- <u>Version 0.3</u>: Revised adjustment (Dec 2015)
  - 2 m temp and humidity is adjusted on 2 m and then shifted to 10 m using LY09 formula
  - Adjustment is done essentially on v0.0
  - *Version 0.4*: Very low temperature is cut-off around Antarctica

#### JRA55-based surface atmospheric data set for forcing ocean—sea-ice models

<u>Summary of the adjustment method for v0.3 (Dec 2015)</u> (After extensive discussions with collaborators)

|                                                                                                                                 | reference*<br>data                         | adj*factor*<br>based*on | Bme*<br>dependency | spaBal*<br>dependency* | How*is*the*<br>factor*used |  |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------|--------------------|------------------------|----------------------------|--|
| short wave                                                                                                                      | adjusted<br>CERES <sup>%</sup>             | mar2000-<br>feb2015     | monthly            | (x,y) &<br>constant    | multiply                   |  |
| long wave                                                                                                                       | adjusted<br>CERES <sup>%</sup>             | mar2000-<br>feb2015     | monthly            | (x,y) &<br>constant    | multiply                   |  |
| precipitation                                                                                                                   | CORE                                       | 1979-2008               | monthly            | (x,y) &<br>constant    | multiply                   |  |
| air temperature                                                                                                                 | JRA55-anl_surf <sup>#</sup><br>IABP-NPOLES | 1979-1998               | monthly            | (x,y)                  | offset                     |  |
| specific humidity                                                                                                               | JRA55-anl_surf <sup>#</sup>                | 1979-1998               | monthly            | (x,y)                  | multiply                   |  |
| wind speed                                                                                                                      | QuikSCAT*<br>JRA55-anl_surf <sup>#</sup>   | aug1999-<br>oct2009     | monthly            | (x,y)                  | multiply                   |  |
| wind angle                                                                                                                      | QuikSCAT*<br>JRA55-anl_surf <sup>#</sup>   | aug1999-<br>oct2009     | monthly            | (x,y)                  | offset                     |  |
| Red: change from v0.2(%) CERES-EBAFv2.8 Surface (Kato et al. 2013)<br>(*) Remote Sensing Systems 0.25 x 0.25 data set version 4 |                                            |                         |                    |                        |                            |  |

(#) Screen level analysis of JRA55

#### \*Tsujino talk, Jan2016 OMDP meeting

### **POPCICE Ocean-ice Hindcast Experiments**

| Experiment:                       | JRA55                                                                   | CORE                             | 20CR                          |
|-----------------------------------|-------------------------------------------------------------------------|----------------------------------|-------------------------------|
| Forcing data                      | JRA55v0.3                                                               | CORE.v2_iaf                      | 20CRv2c                       |
| Forcing reference                 | Kobayashi et al., 2015, <i>JMSJ</i><br>Tsujino et al., 2015, pers.comm. | Large & Yeager, 2009, Clim. Dyn. | Compo et al., 2011, QJRMS     |
| Downwelling radiation             | JRA55v0.3 *                                                             | GISS ISCCP-FD *                  | 20CRv2c *                     |
| Atmos. State (θ, q, ρ, <b>U</b> ) | JRA55v0.3 *                                                             | NCEP *                           | 20CRv2c *                     |
| Precipitation                     | JRA55v0.3 *                                                             | GPCP/CMAP/Serreze *              | 20CRv2c *                     |
| Forcing cycle                     | 1958-2009 (52-year); 5 cycles                                           | 1958-2009 (52-year); 5 cycles    | 1958-2009 (52-year); 5 cycles |
| Initial Condition                 | PHC2; state-of-rest                                                     | PHC2; state-of-rest              | PHC2; state-of-rest           |
| Ocean Model                       | POP 1deg, 60lvl (CESM1.4)                                               | POP 1deg, 60lvl (CESM1.4)        | POP 1deg, 60lvl (CESM1.4)     |
| Ice Model                         | CICE4 1deg (CESM1.4)                                                    | CICE4 1deg (CESM1.4)             | CICE4 1deg (CESM1.4)          |
| Ocean coupling frequency          | daily                                                                   | daily                            | daily                         |
| Salinity restoring                | 4-year                                                                  | 4-year                           | 4-year                        |
| Continental Discharge             | Dai et al. (2009)                                                       | Dai et al. (2009)                | Dai et al. (2009)             |

# Spin-up

#### **Global–Mean Temperature & Salinity**



- Large, abrupt cooling in first JRA cycle; not seen in CORE
- Negative Temperature drift continues through 5<sup>th</sup> cycle

 Comparably small negative drift in Salinity (precip\_factor corrects for FW imbalance)



#### **Global Heat Flux Analysis**





**20CRv2c** 



Global climatological heat flux (W/m<sup>2</sup>) into the ocean when coupled to observed SST and sea ice fraction using LY09 bulk formulae:

CORE: +3.6 JRA55v0.3: 0.0 20CRv2c: +0.1

1950 1960 1970 1980 1990 2000 2010

#### Horizontal Mean Temperature Diff from Obs.





3

.9

.6 .3

.0 -.3 -.6

-.9

#### Horizontal Mean Temperature Diff from Obs.

#### CORE



#### Heat Content Trends over simulation years 1-40 (JRA55)

200–500m T Trends for 1–40 1.6 60<sup>0</sup>N 1.2 0.8 30<sup>0</sup>N 0.4  $\mathbf{0}^{\mathrm{o}}$ 0 -0.4 30<sup>0</sup>S -0.8 -1.2 60<sup>0</sup>S -1.6 Heat Content Trends for 1–40 10 60<sup>0</sup>N 7.5

200-500m



#### **Full depth**

#### **Southern Ocean spinup**



#### **Southern Ocean spinup**



#### AMOC



 Stable AMOC of comparable mean strength to CORE by 5<sup>th</sup> cycle

#### **Annual Mean Sea Ice Time Series**



• JRA55 yields higher ice volume & lower snow volume in both hemispheres

# ➔ Excessive cold drift in JRA55 hindcast appears related to collapse of Antarctic sea ice in 1<sup>st</sup> cycle; still under investigation (apparently wind-related)

#### → AMOC stabilizes at reasonable strength

#### → ACC is too strong

# ➔ Sea ice volume/area eventually stabilizes at good\* levels in both hemispheres

\*better than CORE

### **Mean State**

#### (5th cycle, 1985-2009 climatology)

**SST Bias** 

PO:

\*OBS = Hurrell et al. 2008

JRA55

#### SST difference (JRA55 - CORE)



CORE

#### 25 0 0.25 0.5 1 1.5 2 2.5 3

**SST Bias** 

\*OBS = Hurrell et al. 2008

JRA55

CORE

#### SST difference (JRA55 - CORE)



- Largest bias reduction in eastern boundary upwelling regions
- Further improvements in tropical Pacific & Atlantic

**SSS Bias** 

\*OBS = PHC2

JRA55



CORE

#### SSS difference (JRA55 - CORE)



- Bias reduction in tropical Atlantic, tropical N. Pacific, Indian
- Bias increase in maritime continent and Arctic regions

#### **Zonal Mean Temperature**



#### **Zonal Mean Salinity**

**JRA55** 

X





#### **Zonal Mean IAGE**

**JRA55** 



#### MOC



#### AMOC and Heat Transport (2005-2013 mean for both simulations and RAPID)



- Atlantic heat transport too weak
- ➔ Perhaps related to too vigorous AABW cell



#### Density (>2000m) JRA55v0.3 – COREII

**BSF** 



SSH JRA55v0.3 – COREII

60<sup>o</sup>N

X

 $30^{\circ}N$ 

0<sup>0</sup>

30°S



#### Winter NH Sea Ice Concentration



40

5 1

-4 -6

Comparably good winter ice edge representation in Arctic, except for ice edge retreat in northern Labrador Sea

#### Winter NH Sea Ice Thickness

#### JFM Mean g14b6.JRA55.02 Yrs 0236 - 0260g14b6.CORE2.01 Yrs 0236 - 0260



5

4

3

2

1

 $\checkmark$  Thicker winter sea ice with JRA55





#### Summer NH Sea Ice Thickness

#### g14b6.JRA55.02 Yrs 0236 - 0260g14b6.CORE2.01 Yrs 0236 - 0260



5 4.5 4 3.5 3 2.5 2 1.5 1 0.75 0.5

0.1





Seasonal Cycle of Sea Ice Extent

• Despite thicker ice, no improvement in summer SIE bias

 Improved timing of summer minimum, but mean summer SIE is worse



- Overall reduction of temperature bias in upper ocean with notable improvements in chronic SST warm bias in upwelling zones
- Slight degradation in upper ocean salinity bias, particularly in the vicinity of the Maritime Continent
- → Abyssal waters too cold and fresh (spinup issue)
- ➔ AMOC stabilizes at reasonable (slightly weak) strength, but associated depth profile and heat transport are degraded (spinup issue?)
- $\rightarrow$  ACC is too strong
- → Encouraging improvements in sea ice simulation

## **Interannual Variability**

(5th cycle, 1985-2009)



#### SST Skill

#### Difference

1958-2009 annual SST correlation with OBS g14b6.JRA55.01-g14b6.CORE2.01

**JRA - CORE** 



#### **T**urbulent Heat Flux Comparison



- The mean values are smaller in JRA55 for all basins
- Discrepancy is most obvious in the Atlantic Latent heat flux: the ~1980 peak is absent in JRA55
- ✓ ~ 1980 peak is more or less found in all basins in CORE-II
- ✓ The abrupt drop in the global mean is largely due to the IO







#### **Tropical Pacific Zonal SST Gradient** (Nino4 – Nino3)



- Spurious ΔSST trend in CORE contributes to poor ENSO skill in CORE-initialized decadal prediction runs
- ✓ Much better simulation with JRA55

# **Equatorial Pacific Zonal Wind**







- Spurious ΔSST trend in CORE contributes to poor ENSO skill in CORE-initialized decadal prediction runs
- ✓ Much better simulation with JRA55

### Monthly AMOC Time series at 26.5°N



#### **Annual AMOC Time series**



 AMOC variability in CORE & 20CR is very similar; JRA55 gives different low-frequency variability

• 1970->mid-1990s trend is positive in CORE & 20CR, negative in JRA55

#### **Annual Labrador Sea Hydrography Time series**



#### Labrador Sea (52-60°N, 60-44°W) Time Series

- Deep convection actually stronger in JRA55 particularly in 1970s (so weaker AMOC is **not** due to weaker NH buoyancy forcing!)
- Related to stronger turbulent heat flux forcing (much colder, drier air prior to ~1980), and consistently stronger winds
- ★ Why do JRA55 and CORE(NCEP) surface air properties over the Atlantic DWF regions diverge so dramatically prior to 1980?









#### Labrador Sea Winter Heat Flux Differences (1972-78)

- Flux analysis (using same observed SST & sea ice extent data) shows large (~100 W/m<sup>2</sup>) winter flux differences associated with air temperature difference along the winter sea ice edge
- Perhaps related to different (pre-satellite) sea ice boundary conditions used in the different reanalyses??
- Might Southern Ocean spinup issues also be related to sea ice boundary conditions in the JRA55 reanalysis?



ir Temp.

#### JRA55 – CORE

magenta (JRA55 SIE) Black (NCEP SIE)



#### Southern Ocean 10m air temperature



JRA55v0.3 1.6 1.2 -55 0.8 Latitude [Ŋ] -60 0.4 0 -65 -0.4 -0.8 -70 -1.2 -1.6 1970 1990 1960 1980 2000

#### Antarctic Circumpolar Current

 V0.4 (lower bound on Antarctic air temp, as in CORE) yields weaker mean ACC and reduced 1970s spinup





#### Antarctic Circumpolar Current

- V0.4 (lower bound on Antarctic air temp, as in CORE) yields weaker mean ACC and reduced 1970s spinup
- ACC variability still differs from CORE despite similar TAUX trend



#### Sensitivity to atmospheric temp & humidity

- New experiment: repeat 5<sup>th</sup> cycle of JRA55v0.4 but using CORE air temp & humidity
- JRA55 variability in Southern Ocean appears to be strongly influenced by wind-driven Ross Sea polynya in 1970s → very different buoyancy forcing of ocean
- JRA55 variability in the N. Atlantic changes character with different temp & humidity



#### ₩H Sea Ice

Winter

Winter (JFM) sea ice area anomaly

°W-180°E)



- Very comparable winter sea ice extent variability over the satellite era
- Summer sea ice extent variability is more realistic in JRA55 (thicker winter ice)



#### **N**H Winter Sea Ice

- Large differences in winter sea ice extent in the pre-satellite era
- JRA55 seems to do better than CORE, but...

e area anomaly



#### **N**H Winter Sea Ice

- Large differences in winter sea ice extent in the pre-satellite era
- JRA55 seems to do better than CORE, but...

e area anomaly



- ➔ Preliminary analysis with POPCICE suggests that the realism of simulated ocean/ice interannual variability can be improved in many respects by moving from CORE to JRA55
- → Very promising improvements in skill relative to obs in SST (except Maritime Continent), wind-driven MOC, & sea ice
- ➔ HOWEVER, there are important outstanding questions regarding the fidelity of multidecadal ocean/ice variability driven by high latitude buoyancy forcing
- → Work is ongoing to address these & other issues for JRA55v1.0

#### **Turbulent Heat Flux Comparison**



- ✓ Apparently, the different low-frequency variability in Q<sub>lh</sub> is due to opposite trend in the South Atlantic, especially off the west coast of the Africa
- ✓ which is related to the opposite trend of both specific humidity and wind speed.

#### **Turbulent Heat Flux Comparison**

Q<sub>lh</sub> Trend (1986-2005)



|                     | 1   |     | 1  |   |   |    |    |    |
|---------------------|-----|-----|----|---|---|----|----|----|
|                     |     | 1   |    |   |   |    |    |    |
| -32                 | -24 | -16 | -8 | 0 | 8 | 16 | 24 | 32 |
| $W m^{-2} dec^{-1}$ |     |     |    |   |   |    |    |    |

#### **NH Winter Sea Ice**



#### Labrador Sea Winter Heat Flux Differences (1972-78)

• From hindcast simulations:





#### Southern Ocean Winter Heat Flux Differences (1972-78)

rom Forcing



#### Southern Ocean Winter Heat Flux Differences (1972-78)

**Difference (JRA55-COREII) From Hindcast Simulations** 





#### **Spinup Sensitivity Runs**



