Can we constrain the past and futures ice shelves? the basal melting calculation

Florence Colleoni¹, Aurélien Quiquet², Enea Montoli¹, Verena Haid¹

¹Centro-Euro Mediterraneo sui Cambiamenti Climatici (CMCC, Italy) ²Laboratoire des Sciences du Climat et de l'Environnement (LSCE, France)

Ice shelves in the past

An Arctic Ocean ice shelf during MIS 6 constrained by new geophysical and geological data

Martin Jakobsson^{a,*}, Johan Nilsson^b, Matthew O'Regan^a, Jan Backman^a, Ludvig Löwemark^a, Julian A. Dowdeswell^c, Larry Mayer^d, Leonid Polyak^e, Florence Colleoni^{a, f}, Leif G. Anderson^g, Göran Björk^h, Dennis Darbyⁱ, Björn Eriksson^a, Daniela Hanslik^a, Benjamin Hell^a, Christian Marcussen^j, Emma Sellén^a, Åsa Wallin^a

M. Jakobsson et al. / Quaternary Science Reviews 29 (2010) 3505-3517

Repeated Pleistocene glaciation of the EastSiberian continental marginNature Geoscience, 2013,
vol. 6, no 10, p. 842-846

Frank Niessen¹*, Jong Kuk Hong²*, Anne Hegewald¹, Jens Matthiessen¹, Rüdiger Stein¹, Hyoungjun Kim², Sookwan Kim^{2,3}, Laura Jensen¹, Wilfried Jokat¹, Seung-II Nam² and Sung-Ho Kang²

Large uncertainties on ice shelves extent and timing

Choice of basal melting: ice shelf mass balance

Choice of basal melting: ice shelf mass palance

Ice shelves in the past

Modelling West Antarctic ice sheet growth and collapse through the past five million years

David Pollard¹ & Robert M. DeConto²

Vol 458|19 March 2009|doi:10.1038/nature07809

Some confidence about ice shelves history

ANDRILL-MIS sediments record

Current ice shelves

Ice-Shelf Melting Around Antarctica E. Rignot et al. Science 341, 266 (2013);

Basal melt rates inferred from the observations of:

> dH_{upstream}/dt

SMB = Accum - Abl

> Parametrisations/ formulations of basal melting

In the context of **stand alone ice-sheet*** modelling:

*ice-ocean coupling is still partial: no dynamic land-sea mask *need the stand-alone ice sheet models to compute projections and past ice sheets

- Do parametrisations help providing some constraints?
- How to choose the basal melting formulation?

Basal melting: Ice shelf - ocean circulation cavity system

Basal melting: simplest parametrisation

Limitations:

- □ No refreezing
- uniform values for an entire hemisphere or regions
- uniform values in function of depth
- How to determine the depth threshold?

incorrect representation of the ice-ocean boundary layer

Basal melting: three equations formulation

Exchange velocities:

Holland and Jenkins (1999):

$$(1) \quad Q_{latent} = Q_I^T + Q_M^T$$

$$Q_I^T = -\rho_i c_{p_I} \kappa_I \frac{T_S - T_B}{H_I}$$

 $Q_M^T = -\rho_M c_{p_I} \gamma_T (T_B - T_M)$

$$(2) \quad Q_{brine}^S = Q_I^S + Q_M^S$$

 $Q_I^S = 0$ No salt diffusion within the ice shelf

$$Q_{M}^{S} = -\rho_{M}\gamma_{S}(S_{B} - S_{M})$$

$$\downarrow$$
salinity
exchange
velocity

(3) $T_b = 0.0939 - 0.057S_b + 7.64 \times 10^{-4}Z_b$

Basal melting: examples

Holland and Jenkins (1999): Three equations formulations

$$bmelt = \left[\rho_W c_W \gamma_T (T - T_b) + \rho_I c_I \kappa_I \frac{\delta T_I}{\delta z}\Big|_b\right] / (L * \rho_I) \qquad \qquad \gamma_T, \gamma_S \frac{\text{Thermal and salinity}}{\text{exchange velocities}}$$

$$bmelt = \frac{\rho_W \gamma_S (S - S_b)}{\rho_I S_b} \qquad \qquad \text{no plume} \qquad \qquad T_I \qquad \text{ice shelf temperature}$$

$$T_b = 0.0832 - 0.057S_b + 7.61 \times 10^{-4} \times z_b \qquad \qquad T_I \qquad \text{ice shelf depth}$$

Martin et al.(2011): Two equations formulations (infinite salt diffusivity)

$$bmelt = \rho_W c_W \gamma_T F_{melt} \frac{(T - T_f)}{L\rho_i} \qquad \text{Fmelt} = 0.005$$
$$T_f = 273.15 + 0.0939 - 0.057S_0 + 7.64 \times 10^{-4} z_b \,.$$

Pollard and Deconto (2012): Two equations formulations (Martin et al. 2011 + adds on)

$$bmelt = \rho_W c_W K' \gamma_T F_{melt} |T' - T_f| \frac{(T' - T_f)}{L\rho_i} \qquad w_a = max[0, min[1, (A_a - 50)/20]]$$

$$T' = Tw_a + (-1.7)(1 - w_a) \qquad A_a = \text{subtended arc-to-ocean angle}$$

$$K' = Kw_a + (-1.7)(1 - w_a) \qquad K = 1 \text{ or } 8 \text{ according to the type of ice shelf}$$

Basal melting: Present-day Antarctica

One order magnitude difference between Martin et al. (2011) and the two other methods

Pollard and Deconto (2012) is in better agreement with observations than the other two methods

Basal melting: Penultimate glaciation in Arctic

Martin et al. (2011) seems more reasonable than the others

0

Basal melting: Last Glacial Maximum Arctic

Forced with MIS6 ocean temperatures from Colleopi et al. (2016)

Note that the color scales are different

- The different existing methods do not converge, unless tuning
- Present-day Antarctica: the methods have to be tuned to each ice shelves
- The methods yields different basal melt rates even in the glacial Arctic

The best methods for Antarctica present-day is that of Pollard and Deconto (2012) The best methods for glacial Arctic is that of Martin et al. (2011) if we want some ice shelves to grow

What will be the best parametrisation of basal melting for the future?