Constraint on the penultimate glaciation ice sheet topography: the last two glaciations as simulated by CCSM4

Florence Colleoni¹, Claudia Wekerle³, Jens-Ove Naslund⁴, Jenny Brandefelt⁴, Simona Masina^{1,2}

¹Centro-Euro Mediterraneo sui Cambiamenti Climatici (CMCC, Italy)
²Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italy)
³Alfred Wegener Institute (AWI, Germany)
⁴Swedish nuclear waster management Company (SKB, Sweden)

NCAR winter meeting 2016 - PaleoWG

How was sea level compared with the LGM?

Large uncertainty on sea level

How was sea level compared with the LGM?

Can we constrain the ice topography of the penultimate glaciation?

Large uncertainty on sea level

CESM 1.0.5: B compset - CCSM4 configuration

Length of simulations: 900 years

Type of simulations: steady states

Atmosphere: CAM 4

- Finite Volume grid
- 26 vertical levels
- 0.9°x1.25° horiz. res.

Land: CLM 4
Finite Volume grid
0.9°x1.25° horiz. res.
Vegetation: prescribed
Carbon cycle: diag.
Runoff: RTM module

Sea ice: CICE 4

Displaced pole (Greenland) ~1°x1° grid horiz. res. Thermodynamics

Ocean: POP 2

Displaced pole (Greenland) ~1°x1° grid horiz. res. 60 vertical layers

External forcing: 140 kyrs BP (21 kyrs BP)

CO₂ = 192 ppmv (185)

Perihelion: Dec. 3 (Jan. 17)

CH₄ = 400 ppmb (350)

Eccentricity: 0.033 (0.019)

72

Rrad

Atlantic Meridional stream

Max: 36 Sv

Can we constrain the Northern Hemisphere ice sheet topography?

Sea surface temperature: model ve

Sea surface temperature: model vs. proxies

Precipitation and glaciated areas: model vs. proxies

Proxies suggest:

- larger European glaciers
- **smaller** Himalayan glaciers

during the MIS6 than during the LGM

- ★ Kamchatka glaciated (Barr et al., 2014)
- ☆ Smaller glaciated area compared with LGM (Owen et al., 2006)
- ★ Most extensive glaciation (Dehert et al., 2010; Preusser et al., 2011)
- ★ Most extensive glaciation (Garcia-Ruiz et al., 2013)
- ★ Smaller Laurentide than at LGM (Obrotcha et al., 2014)
- ☆ Large Eurasian ice sheet due to Southward Shift of the Siberian high (Railsback et al., 2014)

Changes in atmospheric circulation

- Southward shift of ITCZ (Wang et al., 2008)
- North East trades dominant + large seasonal contrast (Flores et al., 2000)
- Westerlies as a source for Asian monsoon (Railsback et al., 2014)

Precipitation changes

- Drier climate than at LGM (Hodge et al., 2008)
- Drier climate than at LGM (Roucoux et al., 2011)
- Weaker Asia monsoon (Wang et al., 2004)
- Wetter than at LGM (Partridge et al., 1997)
- Wetter than at LGM (Ayalon et al., 2002)
- Drier climate than at LGM (Moernaut et al., 2010)
- Wetter than at LGM (Lachniet et al., 2014)
- Wetter than at LGM (Zech et al., 2013)

Proxies suggest:

- a drier sub-tropical and tropical climate

during MIS 6 than during the LGM

3500

2500

1500

500

ce elevation (m)

Precipitation: model vs. proxies

Both MIS6 simulations are **drier** in the tropical area than in the LGM one

Not in agreement with the proxies

Polar regions cryosphere: model vs. proxies

Compared with LGM, proxies suggest:

- a **smaller** Laurentide
- a larger Eurasian ice sheet extent
- large ice shelves in the Arctic
- Siberian highs ice covered
- East Siberia is glaciated
- **Smaller** ice sheet along the Pacific margin

Glaciated areas: model vs. proxies

Ice sheet simulations performed with the GRISLI ice sheet model (Ritz et al., 2001)

- The simulated MIS 6 glaciations exhibit a climate **comparable** to the simulations of LGM
- The use of a small Laurentide causes a shift in the planetary waves: explains most of temperature and precipitation anomalies between the two MIS 6 simulations
- The comparison between the proxies and the MIS 6 simulations: supports a Laurentide ice sheet smaller than during the LGM

BUT

The two MIS 6 topographies tested here are perhaps too extreme: the solution might be in between.