Intensification of tropical circulation documented by Neogene terrestrial δ¹⁸O records of the western U.S.

> d Colorado Plateau

Ran Feng, Chris Poulsen and Martin Werner

What might this area look like in the past?

55 – 28 Ma

Stable isotope (O¹⁸) compositions

- Stable isotope (O¹⁸) compositions of authigenic minerals and organic materials
- Mineral O¹⁸ composition

– proxies for the surface water and precipitation O^{18}

- δ notation:
 - $\delta = (R Rstd)/Rstd*1000, R = O^{18}/O^{16}$

How do we interpret elevations from proxy δ^{18} O?

Surprising enrichment pattern of Neogene isotope records

Neogene Environmental changes

- Increasing equator-to-pole temperature gradient
 - lowering CO₂ level (2 x PI CO₂ to PI CO₂) (Zhang et al., 2014)
 - high latitude glaciation (early Neogene reconstructions from Herold et al., 2008)
 - increasing meridional SST gradient (Goldner et al., 2014)
- Increasing tropical Pacific zonal SST gradient (Zhang et al., 2014)
- Grassland expansion (Strömberg, 2011)
- Geographic and topographic changes (outside the western U.S.) (Herold et al., 2008)

Experiment setup

- ECHAM5-JSBACH-wiso: isotope tracking in both atmosphere and land model (Werner et al., 2011; Haese et al., 2013)
 - T63 resolution (~2°)
- Boundary conditions designed to test regional responses to four different aspects of Neogene climate changes (ΔC):
 - $-\Delta C = \overline{C((\Delta T_{meridional})_{mod}, (\Delta T_{zonal}, Gc, Vc)_{mod}, R)} C((\Delta T_{meridional})_{early Neogene}, (\Delta T_{zonal}, Gc, Vc)_{mod}, R);$ $\Delta T_{meridional}: meridional SST gradient, CO_2, icesheets$ $\Delta T_{zonal}: zonal Pacific SST gradient$ Gc: geographic and topographic changes Vc: vegetation changes (Grassland expansion)

Responses of $\delta^{18}O$

• Enrichment pattern in response to increasing equator-to-pole temperature gradient matches the proxy enrichment pattern at most locations.

Comparison with proxy data

• The proxy enrichment across the central Rockies and northern Great Basin can mostly be explained as δ^{18} O responses to Neogene strengthening of the equator-to-pole temperature gradient.

Global responses of soil water $\delta^{18}O$

Responses of geopotential height and vertical pressure velocity 700 hPa

Enhanced subsidence

t changes (m)

Strengthened Hadley circulation

Summer Hadley circulation responses

erturning mass flux (10¹⁰ kg/s)

• Strengthen of the Hadley circulation by increasing equator-to-pole temperature gradient through enhanced tropical convergence and moist convection

Conclusions and implications

- Neogene terrestrial δ¹⁸O records from the Sierra Nevada and Central Rockies may have recorded long-term intensification of Hadley circulation.
- Stable isotope records have the potential to be used to reconstruct past circulation changes with the help of isotope-enabled climate models

Questions?