Upscaling in situ observations to <u>surface mass balance</u> estimates and models of the Greenland ice sheet

Mike MacFerrin CIRES, University of Colorado CESM LIWG Meeting, 9 Feb 2016

Greenland Surface Mass Balance, (2002-2014)

- Surface Mass Balance (SMB) accounts for 68% of mass loss and 79% of acceleration in Greenland, 2002-2014
- SMB is currently the **dominant mechanism** of mass loss

Velicogna, et al. (2014), GRL

Firn Densification

A primary uncertainty in ice sheet altimetry

Firn Densification

• Firn Compaction Verification and Reconnaissance (FirnCover)

Community Firn Model

Vertical compaction models from published literature

Herron & Langway, 1980	J. Glaciology, stress-based solution	Goujon et al., 2003	JGR Atmospheres
Herron & Langway, 1980	J. Glaciology, analytic solution	Barnola et al., 1991	Tellus B
Essery et al., 2013	Advances in Water Resources	Ligtenberg et al., 2011	The Cryosphere
Cummings et al., 2013	U. Montana Snow, Ice & Climate	Simonsen et al., 2013	J. Glaciology
Arthern et al., 2010	J. Geophysical Research	Li & Zwally, 2011	Annals Glaciology

Most make steady-state climate assumptions

CFM Results at Summit, Greenland

- Forced with 1958 2013 temperature and accumulation (RACMO)
- Total porosity differs up to 220%

Max Stevens, University of Washington

Firn Model Initialization

Compare firn models forced by identical current climate

NASA-SE

Extremely sensitive to initialization

Initialized 800 years, **looped** temp & accum 1958-1978 from RACMO

Shallow Firn Saturation

 Shallow firn was saturating in successive "big" melt years (2002, 2005, 2007, 2010), which "primed" the firn for runoff

Machguth et al. (2016), Nature Climate Change

Mapping ice lids with GPR

6.0 5.8 5.6 5.2 5.2 5.2 5.0 5.0 10¹⁰ (variance) 4.6

Mapping Ice Lids with IceBridge

- Perched lids (>1 m thickness) span 60,000 km²
- Firn can saturate <u>rapidly</u>
- Runoff can migrate rapidly uphill
- In 2012, Ice lids in SW Greenland added 11±4% to regional runoff

Early saturation modeling

Solving for the ratio (M/C), we obtain

$$\frac{M}{C} \ge \left[\frac{c}{L}T_f + \left(\frac{\rho_{pc} - \rho_c}{\rho_c}\right)\right] \left[1 + \left(\frac{\rho_{pc} - \rho_c}{\rho_c}\right)\right]^{-1}$$
(A2)

Substituting typical numbers for density and temperature for Arctic surface snow at the start of the melt season (e.g., $T_f = -15^{\circ}$ C and $\rho_c = 0.3 \text{ g cm}^{-3}$), M/C takes the value 0.697. This number turns out to be quite insensitive to reasonable variations in T_f and ρ_c , and for a wide variety of firm conditions, the necessary condition for runoff can be stated simply as

$$\frac{M}{C} \approx 0.7$$

Pfeffer, Meier & Illangasekare (1991), GRL

Climate Model	Δ <i>T</i> ,℃	∆c/c	Variation From Standard Model
S	4	0.10	
I	3	0.10	1°C cooler
п	5	0.10	1°C warmer
ш	4	0.15	50% wetter
IV	4	0.5	50% drier
v	4	0.0	no change in accumulation from present

Dye-2 Firn Cores, 2100 m.a.s.l.

- 1998 less than 5% ice content
- 2013 greater than 25% ice content in top 16 m

Dye-2 Firn Cores, 2100 m.a.s.l.

- 1998 less than 5% ice content
- 2013 greater than 25% ice content in top 16 m

Pfeffer, Meier & Illangasekare (1991), JGR

Conclusions

- As temps rise, Surface Mass Balance (SMB) now dominant in Greenland
- Firn has "memory"
 - Initialization and ensemble strategies crucial for short-term simulations
- Community firn model (CFM) density intercomparisons are under way
- SMB exhibits high variability and non-linear "threshold" behaviors
- Spatial resolution is an issue (always is!), thoughtful parameterizations are necessary

Conclusions

- As temps rise, Surface Mass Balance (SMB) now dominant in Greenland
- Firn has "memory"
 - Initialization and ensemble strategies crucial for short-term simulations
- Community firn model (CFM) density intercomparisons are under way
- SMB exhibits high variability and non-linear "threshold" behaviors
- Spatial resolution is an issue (always is!), thoughtful parameterizations are necessary
- I'd like to contribute (a job?)

Questions?

