

The cause of Late Cretaceous cooling: A multi-model / proxy comparison

Clay Tabor, Chris Poulsen Bette Otto-Bliesner, Nan Rosenbloom, Esther Brady Dan Lunt, Alex Farnsworth Paul Markwick

Background: Temperature Records

- SST proxy data suggest gradual cooling from 100-66 Ma
 - Tectonically driven?
 - GHG driven?

Background: Paleogeography

- Tectonic changes from Cenomanian (98 Ma) to
 - Maastrichtian (68 Ma)
 - Western Interior Seaway
 - Drake Passage
 - Opening of Atlantic

TEX

Markwick Getech

Background: CO₂ Records

- CO₂
 reconstructions
 suggest draw down from
 100-66 Ma
 - Large uncertainty

Y. Wang et al. (2014)

Experiment Design

- Models:
 - CESM1.2 CAM4, POP2, CLM4, CICE4
 - HadCM3L HadAM3, TRIFFID, HadOM3

• Configuration:

- Detailed Cretaceous topographies
- Fixed GHG concentrations
- Adjusted solar constants

• Experiments:

- 4x PI CO₂ Cenomanian (100-94 Ma)
- 4x PI CO₂ Maastichtian (72-66 Ma)
- 2x PI CO₂ Maastichtian (72-66 Ma)

Models: Surface Temperature

Ε.

- Global MAT:
 - 4x CO₂ Cenomanian
 - CESM: 22.80°C
 - HadCM3L: 22.18°C
 - 4x CO₂ Maastichtian
 - CESM: 22.92°C
 - HadCM3L: 22.34°C
 - 2x CO₂ Maastichtian
 - CESM: 19.82°C
 - HadCM3L: 19.02°C

A. CEN 4x CO₂ Ann Avg Surf Temp: CESM

C. MAA 4x CO₂ Ann Avg Surf Temp: CESM

MAA 2x CO₂ Ann Avg Surf Temp: CESM

B. CEN 4x CO₂ Ann Avg Surf Temp: HadCM3L

D. MAA 4x CO₂ Ann Avg Surf Temp: HadCM3L

F. MAA 2x CO₂ Ann Avg Surf Temp: HadCM3L

Models: Temperature Change

• Similar response between models

Models: Paleogeographic Response

- Changes important for interpreting proxy records
 - Equatorial Pacific warms
 - North Pacific warms
 - Eastern North
 America cools
 - South Atlantic cools
 - Australia warms

Models: CO₂ Response

- Polar amplification of the cooling
 - More snow and sea ice
- Only a few degrees of cooling in low latitudes
- Global temperature sensitivity of ~3°C

Models: Temperature Decomposition

- Changes in paleogeography:
 - Emissivity: +0.13°C
 - Heat Convergence: 0.00°C
 - Albedo: -0.16 °C
- Changes in CO₂:
 - Emissivity: -2.45°C
 - Heat Convergence: +0.05°C
 - Albedo: -0.75°C

Proxies: SST Compilation

- SST averages from Cenomanian and Maastrichtian
- Standardized calibrations
- SST cooling of almost 6°C

Model / Proxy SST Comparison

- No evidence for a significantly reduced equator-to-pole gradient
- SST gradient suggests sea ice formation in agreement with simulations

Model / Proxy SST Comparison

- 4x PI CO₂ Cenomanian:
 - mean SST difference of +2.27 without foraminifera
- 2x PI CO₂ Maastrichtian:
 - mean SST difference of -0.65 without foraminifera
- Higher CO₂ in Cenomanian to explain discrepancy?

Proxy Bias: 4x CO₂ Cenomanian

 Removal of SST proxy reconstruction data from individual methods

Conclusions

- Cooling from Cenomanian to Maastrichtian likely due to GHG reduction, not geographic change
- Latitudinal SST gradients are not unreasonably shallow
- Land surface temperature reconstructions remain warmer than models

Questions?

http://globe-views.com/dreams/dinosaur.html