

Bob Tomas, Bette Otto-Bliesner & Esther Brady

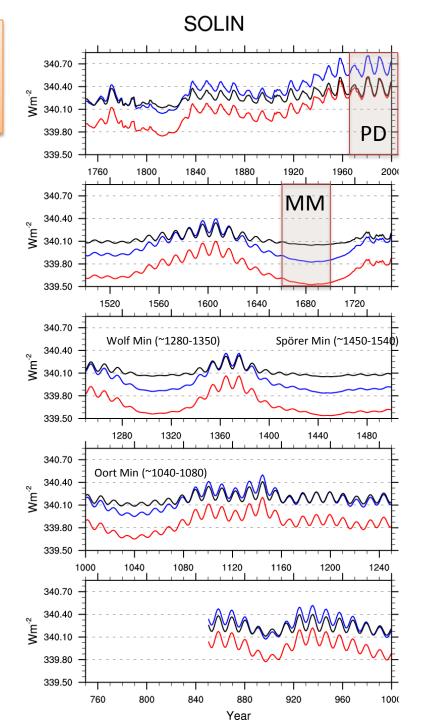
CESM meeting Feb 8, 2016

Model Simulations

- CESM1 (CAM5)
 - Atm and Land at 2°
 - Ocn and Ice at 1°
- Span 850 2005 A.D.
- Four solar only forcing runs and control from the LME (orange in table) - Low
- Solar only forced using PMIP3 VSK (Schmidt et al., 2011; Vieira et al. 2010); other forcing held constant
- Performed 2 additional simulations in which we increased SSI to investigate sensitivity - Medium

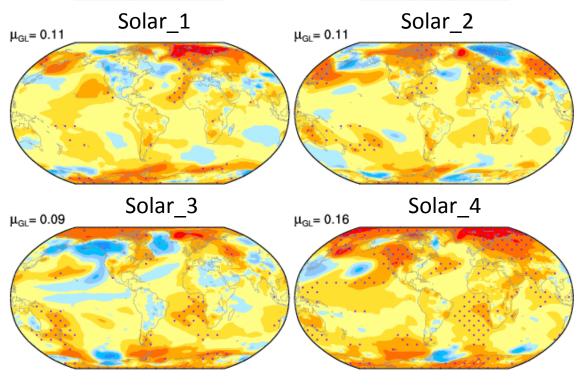
CESM1(CAM5) LAST MILLENNIUM ENSEMBLE COMMUNITY PROJECT DIAGNOSTICS

The climate simulated by each member is documented by the new Climate Variability Diagnostics Package (CVDP). This diagnostics package calculates a variety of climate metrics not covered by the individual component diagnostic packages.


SIMULATION DETAILS AND DIAGNOSTICS

Brief Description	Case Details	Diagnostics					Length of Run Diagnostics	
1850 2° Pre-Industrial Control Case Name: b.e11.B1850C5CN.f19_g16.008	Details	Years 981-1000	Atm	Ice	Land ts.008	Ocean	Ocean Timeseries	Atm Timeseries
850AD 2° Control Case Name: b.e11.B1850C5CN.F19_g16.0850cntl.001	Details	Years 850 - 2005	Atm	Ice 1101- 1150 ts.850- 2005	Land v1850cntl PD-MCA ts.cntl	Ocean	Ocean Timeseries	Atm Timeseries
Full Forcing Ensemble Members #1-#10 Case Names: b.e11.BLMTRC5CN.F19_g16.00X Note: #1 missing atm years 850-1699	Details	Years 850 - 2005	Atm 001	lce 001 ts.001 ts.002 ts.004	Land MCA.001 PD- MCA.001 obs.001 ts.001 ts.002 ts.004	Ocean 001	Ocean timeseries 001 002	Atm Timeseries
Volcanic Only Ensemble Members #1-#5 Case Names: b.e11.BLMTRCSCN.F19_g16.VOLC_GRA.00X	Details	Years 850 - 2005	Atm 001	Ice 001 ts.001 ts.002	Land MCA.001 PD- MCA.001 ts.001	Ocean 001	Ocean timeseries 001 002	Atm Timeseries
Solar Only Ensemble Members #1, #3-#5 Case Names: b.e11.BLMTRC5CN.f19_g16.SSI_VSK_L00X	Details	Years 850 - 2005	Atm 001	lce 001 ts.001 ts.003 ts.004	Land MCA.001 PD- MCA.001 ts.001 ts.003 ts.004	Ocean 001	Ocean timeseries 001 003	Atm Timeseries
Orbital Only Ensemble Members #1-#3 Case Names: b.e11.BLMTRC5CN.F19_g16.ORBITAL.00X	Details	Years 850 - 2005	Atm 001	lce 001 ts.001 ts.002	Land MCA.001* PD- MCA.001 ts.001	Ocean 001	Ocean timeseries 001 002	Atm Timeseries
GHG Only Ensemble Members #1-#3 Case Names: b.e11.BLMTRCSCN.GHG.00X	Details	Years 850 - 2005	Atm	lce 001 ts.001 ts.002	Land MCA.001 ts.001 ts.002	Ocean	Ocean timeseries 001 002	Atm Timeseries
Landuse/Landcover Only Ensemble Members #1-#3 Case Names: b.e11.BLMTRC5CN.f19_g16.LULC_HurttPongratz.00X	Details	Years 850 - 2005	Atm 001	lce 001 ts.001 ts.002	Land MCA.001 ts.001 ts.002	Ocean 001	Ocean timeseries 001 002	Atm Timeseries
Ozone_Aerosols Only Ensemble Members #1- #2 Case Names: b.e11.BLMTRC5CN.f19_g16.OZONE_AER.00X	Details	Years 1850 - 2005	Atm 001	lce 001 ts.001 ts.002	Land MCA.001 ts.001 ts.002	Ocean 001	Ocean timeseries 001 002	Atm Timeseries

http://www2.cesm.ucar.edu/models/experiments/LME

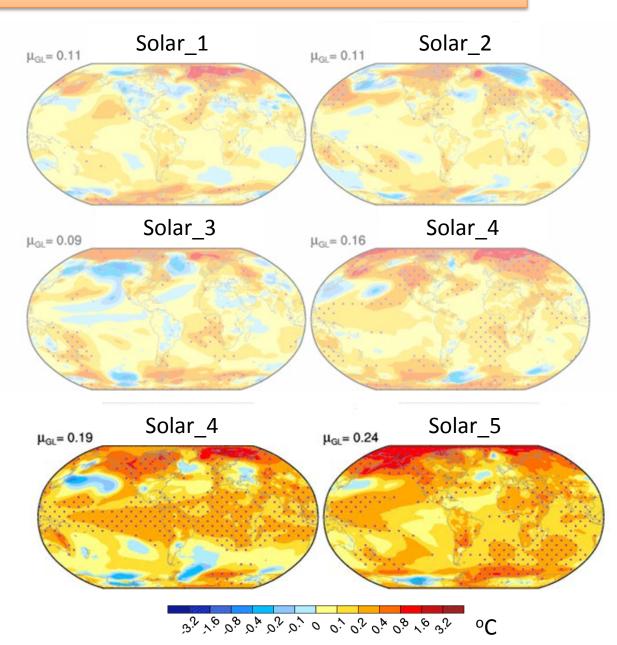

TOA insolation from all solar simulations

- Four solar only simulations used SSI resulting in TOA insolation shown in black
- Two additional experiments: increase PD (1965-2005) minus MM (1640 – 1700; ΔPD-MM) difference x 2.5: 0.32Wm⁻² to 0.80Wm⁻²
- Used two methods :
- PD remain values the same this reduces the overall time mean
- The overall time mean remains the same - the PD values do not line up

T_{2m} Solar only (Low)

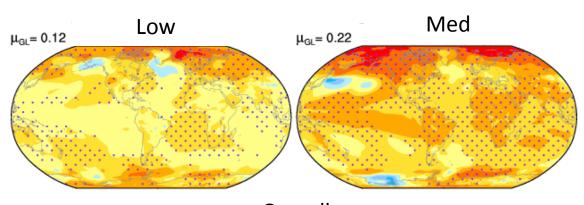
Some broad scale similarities with many regional differences

Differences between simulations suggest it will be difficult to detect regional signal in proxies

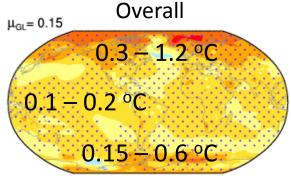


- Extended PD minus MM: 1955-2005 minus 1660-1710
- Stippling: significance at 95%
- Global means on left
- Removed linear trend based on control
- Non-linear contour interval

T_{2m} Solar only & medium solar

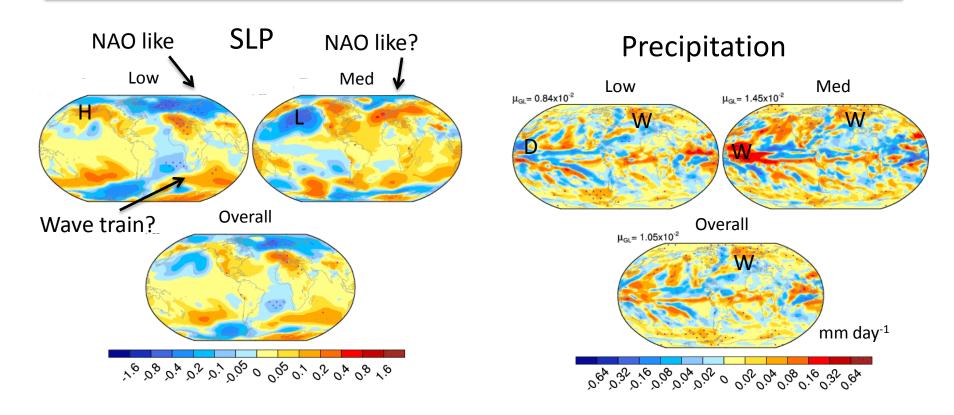

Stronger forcing -> significant tropical responses...

... but tropical Pacific patterns differ considerably

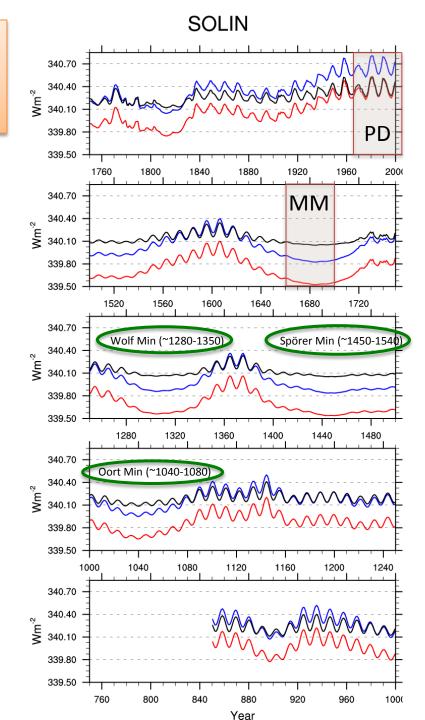


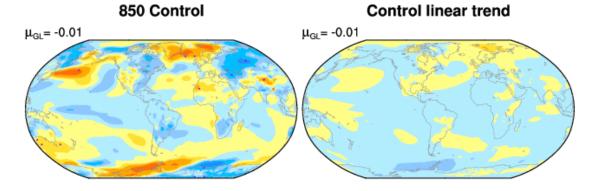
T_{2m} Solar Ensemble Averages

Relatively small sample size yields extensive significant response in T_{2m}


Global warming with polar amplification

Do low/med differences suggest non-linear effects?


Solar Ensemble Averages


More samples might help to reveal additional significant circulation and precipitation responses

Current thoughts on paths forward...

- Analyze the other three Grand Minima periods – does compositing make sense?
- Explore possible differences in tropical responses low vs. medium forcing

ΔTREFHT (°C) sig: 95% 1955 to 2005 minus 1660 to 1710

