CESM Joint Societal Dimensions and Land Model Working Group Meeting 8 February 2016 National Center for Atmospheric Research – Boulder, Colorado

Evaluation of long-term bioenergy penetration considering uncertainties in allowable carbon emissions and technology

Diego SILVA HERRAN SOUSEI-PT, JAMSTEC

Acknowledgement

This study was supported by the Program for Risk Information on Climate Change (Theme B) of the Ministry of Education, Culture, Sports, Science and Technology of Japan

Outline

- Introduction
 - Long-term mitigation under climate and socio-economic uncertainties
- Methods
 - Integrated assessment model
 - Scenarios
- Results and discussion
 - Reference scenario and middle scenario
 - Changes in biomass energy supply
 - Changes in land use change
 - Summary

Introduction

Introduction

Introduction

Emissions pathways and carbon price for stabilization at 550 ppmv for three carbon cycle scenarios. (Figure 2 and Figure 3 in Smith and Edmonds, 2006, Tellus)

- Uncertainties in climate system (allowable CO₂ emissions) vs technology!
- Bioenergy in the long-term (2050/2100) considering mitigation target under uncertain CO₂ emissions path.
- Implications for bioenergy resource use (energy potential), land use change (i.e. compromise food and other LU).

Method – Overall framework

Method - Global Change Assessment Model (GCAM)

- Integrated assessment model (IAM)
- Analysis up to 2100, partial equilibrium, energy and agriculture/land use sectors, 32 world regions.

Method - Scenario setting

Socio-economics:

• SSP2: Shared socioeconomic pathways, intermediate challenges for mitigation/adaptation.

Mitigation scenarios ("RCP4.5"): radiative forcing \sim 4.5W/m² by 2100

Scenario	Description
Ref	No mitigation policy
RCP4.5-lower	allowable CO ₂ emission 5th percentile of EMIC ensemble.
RCP4.5-mid	allowable CO ₂ emission 50th percentile of EMIC ensemble.
RCP4.5-upper	allowable CO_2 emission 95th percentile of EMIC ensemble.

Bioenergy technology scenarios: RCP4.5-mid with assumptions on improvement in capital costs.

Scenario	Description
CapCost-Frozen	Capital cost of bioenergy technologies same as base year.
CapCost-Adv	Capital cost of bioenergy technologies decrease until 2030.
CapCost-Mid	Capital cost of bioenergy technologies decrease until 2050.
CapCost-Delay	Capital cost of bioenergy technologies decrease until 2100.

9

Method – Allowable CO₂ emissions

- Allowable CO₂ emissions compatible with representative concentration pathway (RCP) RCP4.5.
 - Radiative forcing target of 4.5 W/m² by 2100.
- Sample from experiment ensemble using earth system model of intermediate complexity (EMIC).
 - Constrained case: 5/50/95 percentiles (Lower/Mid/Upper).

Method – Climate system parameters in EMIC experiments

Parameter	Component	Default	Perturbation range
Climate sensitivity	Atmosphere	4.7 [b]	$1-6 \text{ K}^{\dagger}$
Vertical diffusivity	Ocean	0.1-3.0 cm ² /sec*	$0.3-3.0 \times default$
Horizontal diffusivity	Ocean	$1 \times 10^7 \text{ cm}^2/\text{sec}$	$0.5-5.0 \times default$
Gent-McWilliams thickness parameter [a]	Ocean	$7 \times 10^6 \text{ cm}^2/\text{sec}$	$1-20 \times 10^{6} \text{ cm}^{2} \text{ s}^{-1}$
Magnitude of freshwater flux adjustment	Ocean	1.0 (ratio to the values by [c])	0.5-2.0
Wind speed used in marine CO2 uptake	Marine carbon	3.3 m/s [b]	2.0-8.0 m/s
Maximum photosynthetic rate	Land carbon	8.0-13.5 µmolCO ₂ /(m ² s)**	$0.8-3.0 \times default$
Specific leaf area	Land carbon	110-170 cm ² /(g drymatter)**	$0.5-2.5 \times default$
Minimum temperature for photosynthesis	Land carbon	-5.0-11.0°C**	-4.5-+3.0°C of default
Coefficient for temperature dependency of plant's respiration	Land carbon	2.0 (dimensionless)	1.5-3.0
A parameter of temperature dependency of soil respiration	Land carbon	46.02 K	35–55 K
Total aerosol forcing	Forcing	(RCPs)	$0.03.0\times RCPs^{\dagger\dagger}$

Table 1. Parameters perturbed in this study and the ranges considered

Parameters perturbed and where the symbols are: * and **: depth- and biome-dependent. [†]initially in a uniform distribution, and then weighted with a beta function (Appendix A1). ^{††}Weighted with combination of two Gaussian functions (Appendix A2). [a]: Gent and McWilliams (1990). [b]: Tachiiri et al. (2010).

[0]: Tachinf et al. (20

[c]: Oort (1983).

Table 1 from Tachiiri et al., Tellus, 2013.

Method - Capital cost of bioenergy technologies

- Outlook for capital cost reduction.
- International Energy Agency: Energy Technology Perspectives, World Energy Outlook.
- IPCC: special report on renewable energy.
- IRENA
- US Department of Energy: annual energy outlook.

Results - Biomass production

- Biomass supply increases considerably with more stringent emissions path (upper → lower).
- Change is within middle range of technical potential in literature.
- Change is smaller than uncertainty in technical potential.
- Share of TPES (10-25%) in middle-low range of mitigation scenarios literature (IPCC AR5).

Results - Biomass power

- Effect of emissions uncertainty on biomass power is large compared to other factors.
- Share of BECCS in electricity supply (7-11%) increases with stringency of emissions path.
- Share of BECCS in biomass power supply is in high range of literature (IPCC AR5).

Results - Biomass supply breakdown

- Biomass mostly used for liquid fuel production in long-term.
- Share in total biomass primary energy supply little affected by emissions uncertainty.

Results - Land use change

- Effect of emissions uncertainty is small compared to those in energy supply.
- Land for bioenergy dedicated crops changes by 11-22%.
- Reductions in unmanaged lands.
- Higher emissions reductions induce loss of natural forest, but gains in managed forest (plantations/reforestation).
- Net change in total forest area not considerable (less than 3% of 2005 area).

Results – Bioenergy supply

- Technology costs have positive impact in 2050.
- Cost reductions in 2100 only favors fuels.
- Uncertainty in biofuels cost comparable to that of allowable emissions.

Results – Land use change

- Compared to uncertainty in allowable emissions, uncertainty in biofuels cost has more impact for cropland.
- Changes in other land uses only considerable in 2050 for optimistic scenarios (e.g. CapCost-Adv).

18

Conclusion

- Evaluated the contribution of biomass energy in the long-term considering uncertainty in allowable CO₂ emissions and technology for intermediate mitigation target (RCP4.5).
- Uncertainty in emissions affects clearly bioenergy supplies (BECCS) and land for dedicated energy crops.
- Effect of uncertain allowable emissions on bioenergy tends to be greater than technology progress.
- Technology optimistic scenarios can change the picture (sp. biofuels).

Next tasks:

- Evaluate more stringent mitigation targets (e.g. RCP2.6).
- Evaluate other uncertainties related to technology (e.g. efficiency) and other socio-economic components.
- Explore role of bioenergy-climate interactions (e.g. via land use change).

Thank you!

• Emissions from "standard" RCP (PIK database) are within the middle and upper percentile of EMIC ensemble.

Global Electricity

Global Land use change compared to 2005

Global Land use

Results

Diego SILVA - CESM Joint SD and LM Working Group Meeting- Boulder, USA - 2016/02/08

GHG emissions

CO₂ emissions (fossil fuel and industry)

