Threshold behavior in surface response to mid-latitude afforestation

CESM-LMWG Meeting Marysa Laguë & Abigail Swann 2016.02.09 mlague@uw.edu

Goal:

Explore how **amount** of trees in mid-latitudes:

- impacts the local energy budget
- modifies cloud cover
- influences global circulation

Goal:

Explore how **amount** of trees in mid-latitudes:

- impacts the local energy budget
- modifies cloud cover
- influences global circulation

How does the response scale with the amount of trees added?

H₂O dominated Forests *cool*

H₂O dominated Forests *cool* H_2O and the candidate and

Boreal

Albedo dominated Forests *warm*

H₂O dominated Forests *cool*

Boreal H_2O and the way has a lot dec

> Albedo dominated Forests *warm*

H₂O dominated Forests *cool*

H₂O or albedo?

Albedo dominated Forests *warm*

Model experiments: Increase tree cover from 30°N – 60°N

• CESM 1.3

- CAM5 atmosphere,
- CLM 4.5 land (with carbon cycle)
- CICE4 dynamic sea ice
- Slab ocean
- 50 year simulations (20 years of spin up)

Model experiments: Increase tree cover from 30°N – 60°N

5 simulations:

- Present day forest cover
- 4 experiments increasing forest cover by ~3,500,000 km² each (50%, 100% grasslands and 50%, 100% agricultural lands)

Model experiments: Increase tree cover from 30°N – 60°N

5 simulations:

~ half the size of Australia (lots of trees)

- Present day forest cover
- 4 experiments increasing forest cover by ~3,500,000 km² each (50%, 100% grasslands and 50%, 100% agricultural lands)

More sun is absorbed over land as tree area increases

More sun is absorbed over land as tree area increases

More sun is absorbed over land as tree area increases

Outgoing surface energy (land area, 30°N to 60°N)

 Δ Latent Heat (H₂O)

More trees = more evapotranspiration

 Δ Latent Heat (H₂O)

More trees = more evapotranspiration

2/21/2016

More trees = more evapotranspiration

Threshold: increasing tree cover doesn't increase water fluxes

Threshold: increasing tree cover doesn't increase water fluxes

Threshold: increasing tree cover doesn't increase water fluxes

(despite absorbing more solar energy)

Threshold: Δ evapotranspiration depends on water availability

Threshold: Δ evapotranspiration depends on water availability

Part of the unaccounted for energy: outgoing longwave radiation

Part of the unaccounted for energy: outgoing longwave radiation

Part of the unaccounted for energy: sensible heat

Part of the unaccounted for energy: sensible heat

Part of the unaccounted for energy: sensible heat

Change heat and water fluxes => change relative humidity

Change heat and water fluxes => change relative humidity

Mid-latitude Response: 2 Regimes

Regime 1: Water available

Energy goes out as water

Regime 2: Water limited

Cloud cover decreases, surface warms

Regime 2: two pathways for energy absorption

Cloud cover decreases, surface warms

Summary

- 1. Increase mid-latitude forest cover: reach a threshold on water fluxes (latent heating)
- Before water threshold, increased clouds compensate for darker surface.
 When water threshold is reached, more trees -> less clouds (troposphere dries)
- 3. Mid-latitudes absorb more solar energy **not only** because the surface gets darker (albedo effect), but also because cloud cover is reduced (more warming than water)

For a given change in energy transport, we get some shift in rain

Quantify this: what is the Δ ITCZ for a given Δ energy transport?

