

Update on CLM5 progress

David Lawrence and the Land Model Working Group

Development targets for CLM5

Consensations

• Land cover and land use change

Global / transient crop capability with irrigation, fertilization, and cultivation of crops (land management) as default for historical and projection runs

More realistic land cover change impact on water and energy fluxes

• Carbon and nutrient cycles

Improved 20thC land carbon stocks and carbon stock trends

Address ecological stones thrown at CLM4 (plants don't get N for free , leaf N isn't static, photosynthetic capacity should respond to environment, stomatal conductance not linked to N-limitation)

• Hydrology

Hydrology representation closer to state-of-art hydrology understanding Increase utility for use in water resource and water-carbon interaction research

• Land-atmosphere chemistry coupling

Enhanced interactions, fire emissions, ozone damage to plants, CH₄ emissions

 Ecosystem Demography model – future biogeochemical core of CLM Functional CLM5(ED) for use in studies of biome boundaries, trait filtering, etc CESM2 coupled runs with CLM(ED) within CMIP6 timeframe; will not be CESM2 default configuration

What's new for CLM5

CREEK STREET

- Crops: global crop model with transient irrig. and fertilization (8 crop types), grain prod. pool Hydrology: dry surf. layer, var. soil depth w/ deeper (8.5m) max soil, revised GW, canopy interc Snow: canopy snow updates, wind effects, 'firn' model (12 layers, max 10m SWE) **Rivers:** Model for Scale-Adaptive River Transport (hillslope \rightarrow tributary \rightarrow main channel) Nitrogen: flexible leaf C:N ratio, leaf N optimization, C cost for N (FUN) Carbon: carbon allocation revised, deep soil decomposability increased Fire: updates, trace gas and aerosol emissions Vegetation: Ecosystem Demography, plant hydraulics, prognostic roots, ozone damage, stress decid phenology trigger Land cover/use: dynamic landunits, revised PFT-distribution, wood harvest by mass
- Isotopes: carbon and water isotope enabled

What's new for CLM5

CORDERS OF LESS

- Crops: global crop model with transient irrig. and fertilization (8 crop types), grain prod. pool Hydrology: dry surf. layer, var. soil depth w/ deeper (8.5m) max soil, revised GW, canopy interc Snow: canopy snow updates, wind effects, 'firn' model (12 layers, max 10m SWE) **Rivers:** Model for Scale-Adaptive River Transport (hillslope \rightarrow tributary \rightarrow main channel) Nitrogen: flexible leaf C:N ratio, leaf N optimization, C cost for N (FUN) Carbon: carbon allocation revised, deep soil decomposability increased Fire: updates, trace gas and aerosol emissions Vegetation: Ecosystem Demography, plant hydraulics, prognostic roots, ozone damage, stress decid phenology trigger Land cover/use: dynamic landunits, revised PFT-distribution, wood harvest by mass
- Isotopes: carbon and water isotope enabled

Proposed revised timeline

Pending approval by the SSC

Jean-François Lamarque lamar@ucar.edu

- Continue to 'tamp down' new N-cycle
- Adjust params / parameterizations to try to resolve problems with simulations

Y	You + 3 others	Low productivity bias in Arctic tundra more 2
r	osie f. + 4 ot	Low LAI in central Asia boreal forest more
r	osie f.	Excessive fire in sub tropics more 1
r	osie f. + 2 ot	LAI and GPP growth in offline and coupled runs is much larger than in CLM4.5 or CLM4 more 5
r	osie f. + 5 ot	Occasional max LAI values near 100 in coupled run in dry (?) regions more
r	osie f. + 2 ot	Small negative vegetation N more
Y	You + 2 others	Check dust emissions with new grass/bare soil distribution
B	Bardan G.	Check if C:N ratio calculations for flexible_CN in CNGResp are correct they don't change answers more
6	1 (
A	Anyone	Negative CH4 emissions?
	Anyone	Rivers: Annual low flow values too high?
Ð	Add a task	

To do list: Scientific development Update surface dataset tool to ingest CMIP6 land use dataset

New History

Hyde 3.2 based Landsat F/NF Multiple crop typs (5) Multiple pasture types (2) Updated Forest Cover/B Updated Wood harvest Updated Shifting Cultivation Extended time domain (850-2015)

New Mgt. Layers

<u>Agriculture</u>

Fraction of cropland irrigated Fraction of cropland flooded Fraction of cropland fertilized Fertilizer application rates Fraction of cropland tilled Fraction of cropland for biofuels *Crop rotations* <u>Wood Harvest</u>

Fraction used for industrial products Fraction used for commercial biofuels Fraction used for fuelwood

New Future Scenarios

Six futures, SSP-based

New Resolution

0.25°

New Transition Matrix

	Pri F	Pri NF	Sec F	Sec NF	C3 Ann	C4 Ann	C3 per	C4 per	C3 N-FIX	Pasture	Rangeland	Urban
Pri F												
Pri NF												
Sec F												
Sec NF												
C3 Ann												
C4 Ann												
C3 Per												
C4 Per												
C3 N-Fix												
Pasture												
Rangela nd												
Urban												

~ 50x information content of CMIP5!

Systematic (?) parameter adjustment

- Starting from TRY database estimates for leaf longevity, SLA, leaf C:N target
 - Tuning for what variables

simulation characteristics

- Separate coupled and land-only tuning
 - Fire
 - Methane (wetland distribution)
 - Dust

CLM5 CLM5 without new N CLM4.5 CLM5 with new wood harvest

CLM5 CLM5 without new N CLM4.5 CLM5 with new wood harvest

-5 Observed Temperature (°C)

0

-15

-10

Figure courtesy A. Slater

5

- Integrate "loose-end" projects
 - Carbon / nitrogen conservation for dynamic landunits
 - Plant hydraulics
 - Dynamic roots
 - Water isotopes (BeTR)
 - Winter wheat
 - Crop tilling
 - Dynamic local river flood stage
 - Permafrost excess ice
 - Switch for PFTs on own column
 - Prescribed soil moisture code

- Code cleanup
 - Rapid code integration for science has lead to accumulation of lots of "Technical Debt"
- Performance
 - CLM5BGC-crop costs ~5-10x over CLM4CN
- Model output rationalization
 - Over 550 fields archived by default

CLM5 development report card

The good

- Strong participation from the LMWG/BGCWGs (>50 people, 15 inst.)
- Scientific basis of model is significantly improved
- Functionality is expanded
- CLM5 should permit greater breadth and quality of scientific inquiry
- >165 CLM tags since CLM4.5 (June 2013)

REPORT	ARD
MATH	A B ⁺
HISTORY	A ⁻ B
ENGLISH	C

CLM5 development report card

The good

- Scientific basis is significantly improved
- Functionality is expanded
- CLM5 should permit greater breadth and quality of scientific inquiry

The bad

• Model improvement not readily apparent in diagnostics (yet)

REPORTO	ARD
MATH	A B ⁺
HISTORY	A ⁻ B
ENGLISH	C

CLM5 versus CLM4.5 ILAMB scores

Sol Water	
\rightarrow	
VIVUIN HINGI	

	CLM45bgc_2degGSWP3	CLM5bgc01_2degGSWP3
<u>Global</u> <u>Variables</u>	0.70	0.68
<u>Variable</u> <u>to</u> <u>Variable</u>	0.73	0.68
<u>Overall</u>	0.71	0.68

	CLM45bgc_2degGSWP3	CLM5bgc01_2degGSWP3
Aboveground Live Biomass	0.71	0.64
Burned Area	0.51	0.42
Gross Primary Productivity	0.75	0.72
Leaf Area Index	0.57	0.58
<u>Global Net</u> Ecosystem Carbon <u>Balance</u>	0.47	0.45
<u>Net Ecosystem</u> <u>Exchange</u>	0.49	0.51
Ecosystem Respiration	0.73	0.70
Soil Carbon	0.56	0.58
Summary	0.60	0.58

CLM5 development report card

The good

- Scientific basis is significantly improved
- Functionality is expanded
- CLM5 should permit greater breadth and quality of scientific inquiry

The bad

- Model improvement not readily apparent in diagnostics (yet)
- CLM was limiting factor (some of the time) in CESM2 testing
- Process has been chaotic, stressful (but also fun at times), inefficient (at times), long, and exhausting for CLM group

Proposed revised timeline

Pending approval by the SSC

NCAR

Jean-François Lamarque lamar@ucar.edu

2nd CLM Tutorial scheduled for **September 12-16, 2016**

- Lectures on underlying model physics, hydrology, biogeochemistry, ecology, etc
- Practical sessions about how to run, modify, and analyze CLM simulations
- CLM5 / CESM2
- ~ 40 students
 - Graduate students, postdocs, early career faculty are eligible
 - Acceptance criteria includes relevance to CLM/CESM project
 - Students will have to secure own travel funding (no add'l registration fee)

Tropical grid [6.13°N, 288.75°E] 20 year annual mean

The bad

- CLM was limiting factor (some of the time) in CESM2 testing
- Process has been chaotic, stressful, inefficient (at times), long, and exhausting for CLM group, ... but new management tools/methods show promise for future

Some observations

- Considerable fraction of new code came from external collaborators
 - External code was of highly variable quality
 - Somewhat successful getting external and internal scientists to utilize SVN revision control and software testing
 - Most new code broke a 'kitchen sink' run
- Complexity of process spurred experimentation with Project Management Tools

Software Engineering (new

functionality, refactoring, etc)

 \odot

CESM CLM and RTM Development 🛍 cseg.cgd.ucar.edu 🏠 🚍 🏵 Public

.

CLM Software Meeting Agenda \odot Unit test walkthrough ≡ WJS 2016-01-04 ⊡ 1/1 2015-12-21 ☑ 11/12

2015-12-14

```
2015-12-07
```

2/12

2015-11-30

2015-11-23

```
10/10
```

2015-11-16

☑ 11/11

2015-11-09

2015-11-02 2015-11-02

2015-10-26

2015-10-19

3/3

2015-10-12

Upcoming tags - next couple of \odot weeks clm4_5_7_r164 Update cime again (and mosart) P1 FUN changes from Rosie ₽3 12/5 Change default settings P2

Rework / remove fglcmask

new surface datasets and initial conditions

Add a card...

Fire parameters for tuning... P1 ⊡0/8 -4 Cleanup duplication between clm45FIRE and clm50FIRE -4 P1 M0/5 Remove extra field sent between: RUNOFF, CPL, and CLM FUN Cleanup wjs ☑ 0/10 - 4 FUN Cleanup 0/5 - 4 Cleanup dynroot √ 0/21 Refactored code and new features to support C & N conservation with dynamic landunits \equiv WJS

next testlist refactor

ED source clean-up and unit tests

Misc. bug-fixes that are bit-for-bit № 1/25

Turn on glc by default, always

Science development (LMWG) 🛛 🛇	Beyond CLM5 soft freeze \odot
Default forcing dataset(s)? GSWP3, CRUNCEP?	Caspian Sea Added to CLM
Change wind-dependent snow density to use 10-m wind $\equiv \wp 1$	ciso fire fix and exit-spinup ciso fix add ciso SSP test
N-fixation ≣	Plant hydraulics - Pierre Gentine and Daniel Kennedy © 1
Ozone: second stage ☑ 0/5	Jinyun hydrology reordering non-bfb
C13 bug fix (Charlie and collaborators)	BeTR code and water isotopes
Keith Lindsay Carbon isotope bugs	Shrub/tundra distribution in Arctic
♀1	Dynamic Landunits $\equiv \wp 1$
	Population density fields for projection periods
	Multiple levels of history output and subgrid archiving by default
	New Land Use Dataset
	cultivation from Sam
	Land management developments

CLM project

Search for...

Task lists	OVERVIEW TASKS MILESTONES MESSAGES FILES TIME NOTEBOOKS RISKS LINKS BILLING PEOPLE						
CLM5 N cycle development	Tasks	ask list					
CLM5 land use development 20							
CLM5 assessment							
CLM5 hydrology developmen 3	- V CLM5 N cycle development						
CLMS plant hydraulics dev 11							
CLM5 issues	Integration of the FlexCN (LBNL), LUNA (LANL) and FUN (JPL) codes into the CLM5 code in preparation for Oct 1 deadline.						
	You + 3 others Launch a flexCN-LUNA-FUN simulation more FlexCN x FUN x LUNA x 12:						
Completed task lists	rosie f + 3 of Check performance of ElevCN and LUNA withOUT crops more 5						
CLM5 stress deciduous pheno 5							
II Reports							
Task Lists Report	Anyone revisit allocation parameters 💋 💿						
Gantt Chart Export	rosie f. + 2 ot Determine appropriate respiration form for CLM5. 👔 👁						
Gantt Chart	Anyone re-revise spinup 🚯 👁						
	rosie f. + 1 oth change cpool and npool error to an end run 🚺 💿						
	You + 7 others Bugs in flexCN, LUNA, FUN more 🛐 👁						
	You + 4 others Solve issue with crop productivity in crop x FUN x LUNA x FlexCN runs 25 💿						
	Add a task 20 completed						
	- V CLM5 land use development						
	Danica L. Crop grain yield to 1-yr product pool more						
	Danica L. Introduce namelist option to turn fertilizer off 🚳						
	Danica L. Add and revise crop output variables more						
	3 Peter L. Modify wood harvest to be by mass rather than by area 📃 🐗 👁						
	Peter L. Evaluate impact in global transient simulation						
	Dave L. Assess net impact of wood harvest with no harvest simulation more (Start: 4 months ago, Wed Sep 9th) → (Due: 4 months ago, Fri Sep 11th)						
	Refer 1 Change land use intermediation so that intermediation for year V occurs during year V rather than year V1 more						

CLM as a community modeling tool

(Dennescenserse. 4

Software development guidelines

- Software developer's guide: read this for general information on the steps in the model development process including information on coding standards, maintaining a branch, testing, and working with the CLM Code Management Team
 - Coding practices
 - Using SVN to work with development branches
 - CLM testing
 - Upcoming CLM branch and trunk tags
 - Recent CLM code refactoring

- Code refactoring: more modular and objectoriented code has promise to ease development process

- Unit testing

Collaborative Nitrogen Cycle Project

(manager and the second

