Using MOSART and Flow Metrics to Diagnose Soil Hydrology in Earth System Models

Hong-Yi Li Research Scientist III, PNNL

Ruby Leung, Tony Craig, Sean Swenson, David Lawrence

09 February 2016

2016 CESM-LMWG meeting

Pacific Northwest

Current status of coupling MOSART within ACME and CESM

Proudly Operated by Battelle Since 1965

ACME v1

- CLM4.5 (VSFM) soil hydrology for runoff
- Qgwl sent directly to basin outlets

CESM2
CLM5 soil hydrology for runoff
Various ways to eliminate negative Qgwl

RTM in ACME v1 and CESM2 is still routing Qgwl in rivers

Numerical experiments

Proudly Operated by Battelle Since 1965

► QIAN_CLM45 (coupled to MOSART/RTM)

- **1972-2004**
- Limited soil depth

► QIAN_CLM50 (coupled to MOSART)

- 1972-2004
- Limited soil depth

QIAN_CLM50_deepSoil (coupled to MOSART)

- **1972-2004**
- Deep (variable?) soil depth
- ► GSWP3_CLM50 (coupled to MOSART)
 - 1985-2010
 - Fixed soil depth

Streamflow observations from over 2500 GRDC stations

Always NO negative flow in space-time
Sourced from negative runoff (Qgwl, Qsub)
Limiting simulation of associated heat and BGC fluxes

Annual flow

Long-term mean (mass balance, effects of landuse,, water transferring)
Nash-Sutcliffe coeff. for annual flow series (Inter-annual var.)

Seasonal variation of flow

- Soil hydrology (precipitation and runoff partitioning)
- Forcing seasonality (interplay between precipitation and evaporative energy seasonality)
- Human impacts (reservoir operation)

Global monthly mean runoff component

Seasonality of flow reduced

by reservoir regulation

Proudly Operated by Battelle Since 1965

Bieman et al., WRR, 2009

Negative Qgwl simulated by CLM4.5

Negative Qgwl leads to negative streamflow simulated by RTM

MOSART annual mean streamflow validation at over 2500 GRDC river stations Prouds Operated by Battelle Since 1965

N-S for annual streamflow series at over 2500 GRDC river stations

	Nash-Sutcliffe coefficients		Normalized RMSE	
	>=0	<0	<=0.25	>0.25
QIAN_CLM45	521	1998	491	2028
QIAN_CLM50	421	2098	392	2127
QIAN_CLM50_2	361	2158	343	2176
GSWP3_CLM50	449	2070	443	2076

Seasonal variation at over 2500 GRDC river stations (CV of mean monthly flow)

Summary

- In ACME and CESM, MOSART eliminated negative flow to facilitate riverine heat and BGC simulations
- Streamflow seasonal variation sensitive to soil hydrology, but effects of forcing and human activities must be considered

Future directions

- Classification of land grids in terms of relative dominance of forcing or soil hydrology on streamflow seasonality (local scale)
- Classification of river gages in terms of flow regulation level of human activities (local to regional scales).

Proudly Operated by Battelle Since 1965

DOE: Accelerated Climate Model for Energy (ACME) project