Reduction of climate sensitivity to solar forcing due to stratospheric ozone feedback: a study contrasting WACCM and SC-WACCM

Gabriel Chiodo Lorenzo Polvani Columbia University

Boulder, 03/09/2016

Impacts of solar variability on climate: mechanisms

•Impact of solar variability on surface climate not well understood

•The most robust impact of 11-year variability is in found in the stratosphere. Important role played by UV-ozone feedback there

An interactive ozone chemistry is needed to capture the O3-UV feedback

• Yet, many earth system models involved in PMIPs, and GEOMIPs did not include an interactive stratospheric chemistry

GEOMIPs – solar forcing

	IPSL-CM5A	MPI-ESM	NorESM	HadGEM2-ES
Forcing from $4 \times CO_2$ (W m ⁻²)	6.4	9.6	7.5	6.8
TSI reduction in G1 ($W m^{-2}$)	48	64	55	53
(percentage)	(3.5%)	(4.7%)	(4.0%)	(3.9%)
Forcing from TSI reduction (W m^{-2})	-8.4	-11.3	-9.6	-9.4

Fernandez-Donado et al., 2013

WAWG meeting 2016, Boulder, CO

Motivation

 In one model (HadGEM3), it has been shown that interactive chem reduces the equilibrium climate sensitivity

Aim of this work

• Examine whether coupled stratospheric chemistry alters the model sensitivity to solar forcing

Model-set up

Results

dT_chem = 0.18 K 0.24 K / W / m²

dT_nochem = 0.24 K 0.32 K / W / m²

•Reduction in global mean SAT response in integrations with chemistry (by 35%)

b) SAT response with specified chemistry (global mean = 0.24 K)

a) SAT response with coupled chemistry (global mean = 0.18 K)

0.0 90S60S 30S EQ 30N 60N90N Latitude

60N

Reduction of response in chemistry run, especially in NH high latitudes

•Difference chem vs nochem can be as large as the response itself

Precip response with coupled chemistry (global mean = 0.009 mm/day)

a)

hydrological sensitivity with chemistry

d P / d SAT = 1.7 % / K

hydrological sensitivity with specified chemistry

d P / d SAT = 2.8 % / K

→ In agreement with HadGEM1 model (Andrews et al., 2010)

WAWG meeting 2016, Boulder, CO

• Stronger Walker-Cell in runs without chemistry. Consistent with bottom-up mechanism (Meehl et al., 2009)

• However, much weaker response with chemistry

- The chemistry amplifies the stratospheric warming response (2x)
- Opposite effect in the troposphere (i.e., cooling)

- Realistic ozone response (similar to 11-yr response 4x larger)
- Is ozone responsible for reduced surface warming in WACCM?

Does ozone cause the differences in surface response?

- By specifying ozone from perturbed WACCM run in SC-WACCM, we reproduce the WACCM response
- Thus, UV-ozone feedback responsible for reduced WACCM sensitivity

Mechanism

- Increase in stratospheric ozone reduces clear-sky SW surface radiation
- Less surface absorption of SW in subtropics and mid-latitudes

Feedback from tropospheric moisture ?

- Decrease in absorbed clear-sky SW in chemistry runs \rightarrow less evaporation than in specified chemistry integrations
- Upper tropospheric moisture change amplifies chem vs nochem diff

Mechanism for ozone-sensitivity

UV forcing enhances O3 production (O2 photol.)

Increasing O3 "filters" more UV (Hartley-Huggins), and VIS irradiance (Chappuis band)

Reduced surface SW radiation (mostly VIS) limits surface warming

Weaker evaporation+precipitation response. Less tropospheric moisture (LW-feedback) 20 Ozone (DU/km

Conclusions

- The stratospheric ozone feedback reduces the model sensitivity to solar forcing
 - Consistent with reduction in sensitivity to GHGs in other models (Nowack et al., 2014). Yet, mechanism fundamentally different
- Models without interactive chemistry (PMIP and GEOMIP) might overestimate climate sensitivity to solar forcing
- Prescribing ozone consistent with imposed solar forcing is viable approach to reduce this potential bias

Chiodo and Polvani, submitted to Journal of Climate (2016)

THANK YOU!