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ABSTRA

Free and forced oscillations are compared for infinite :
layer bounded atmospheres are considered. It is found tha
of the infinite atmosphere with aceuracy that depends on t
oscillations. In studying forced oscillations, the spurious os
resonances. In general, bounded atmospheres do not proper

1. INTRODUCTION
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Toward atmospheres without tops: Absorbing upper boundary conditions

for numerical models

By PHILIP J. RASCH
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It is common practice to use simplified calculations in b
order to elucidate the nature of various more compli- . a
cated atmospheric problems. As pointed out by Lindzen o
[3], & variety of such problems is included in the con- )
sideration of linearized perturbations on a static basic atmo{;ﬁ;}i";ﬁ%gi MARcH 2011 COVEY ET AL. 495
state (or one with a “constant” zonal flow). Such & study on the UBC formula
_gives a remarkably good description of Rossby-Haurwitz r new technique for co
waves, atmospheric tides, and other features. It is clear solutions to simplifice
that various multilevel numerical models do not corre- * radiation UBC:s (ofte
spond precisely to the real atmosphere—especially as ¢ and :pacéc?.tAperIca(g
concerns vertical resolution and the upper boundary. If 8‘1223 ré t‘;:gg for oc . R . .
the above mentioned simplified calculations had been damped nonlinear qu The Surface-Pressure Signature of Atmospheric Tides in Modern Climate Models
carried out for prototypes of the model atmospheres ¥
rather than of the real atmosphere, what would have = CURT COVEY
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ear perturbations on a static ivermore, Californi
isothermal atmosphere for thl‘eepdiﬁ'erent models: f The approp: Livermore, California
1. An infinite atmosphere where disturbances are re- S has been of conc AIGUO DAI AND DAN MARSH
quired to remain bounded as z (i.e., altitude) —w.Tf the atmosphere i ‘ . ,
the disturbances propagate vertically, & radiation con- ¢ modclling purpo: National Center for Atmospheric Research,* Boulder, Colorado
dition is imposed at great altitudes. t the differential s
2. A bounded atmosphere where dp/di=0 at some atmospheric moc RICHARD S. LINDZEN
upper boundary height. i aims: Massachusetts Institute of Technology, Cambridge, Massachusetts

3. A bounded atmosphere wherein the continuous

(i) A review of



Unforced atmospheric waves on a sphere:
Classical equations of motion . . .*

“Primitive Equations”

Linearize around an isothermal background state:
constant scale height H, longitude wavenumber s.

PDE in pertubation geopotential height
(a function of latitude @ and altitude 2)

Separate variables:

® (¢, 2) = O(p) G(z) e7/2"

Laplace Tidal Equation Vertical Structure Equation:
for © solve later
dz2 =~ \H

* See Chapman & Lindzen (1970) Atmospheric Tides: Thermal and Gravitational, or
Forbes (1995) “Tides and Planetary Waves” in The Upper Mesosphere and Lower
Thermosphere: A Review of Experiment and Theory, etc.



... with a non-classical boundary condition*

. At the surface w = 0 as usual, but now the model has a top at z = x; H where dp/dt = 0.

. Eigenvalue problem has one realistic solution + an infinite number of

Roots of (4 1” +2 k = 1) sinh(u x7) +4 pk cosh(ux7) =0 o
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Vertical Wavenumber U Or

" Transcendental equation relates

vertical wavenumber p to x;:
* Real u =»evanescent waves

* Solar heating forces tidal modes.

_ Resonant amplification of semidiurnal

tide seemed plausible . . . until the real
temperature profile of the middle
atmosphere was discovered.

of tides can occur
in numerical models (Lindzen et al.,
Monthly Weather Review 1968).

* see Covey (2015) LLNL Technical Report #678645:
https://e-reports-ext.linl.gov/pdf/802140.pdf




Upper b.c.’s in modern GCMs not well documented
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