Whole Atmosphere Community Climate Model

Development Status

Joe McInerney and the HAO/AIM Section

High Altitude Observatory

National Center for Atmospheric Research

and

NCAR ACOM WACCM Group

NCAR

Objectives of Whole Atmosphere – Ionosphere Modeling

Advances in whole atmosphere modeling are critical to addressing outstanding fundamental questions in ionosphere-thermosphere research.

- How do solar and geomagnetic influences affect the whole atmosphere?
- What are the relative roles of lower atmosphere and solar/geomagnetic forcing on the ionosphere-thermosphere system?
- How does anthropogenic change affect the thermosphere and ionosphere?
- How do atmospheric waves affect the energy and momentum coupling between the lower atmosphere and the ionosphere-thermosphere?
- What are the connections between small and large scale features in the system, e.g., "plasma bubbles"?
- How does the ionosphere-thermosphere vary over multiple time scales, e.g., "space weather" and "space climate"?

Major CESM WACCM/WACCM-X Components

Model Framework	Chemistry	Physics	Physics	Resolution
Atmosphere component of NCAR Community Earth System Model (CESM) Extension of the NCAR Community Atmosphere Model (CAM) Finite Volume Dynamical Core Spectral Element Dynamical Core	MOZART+ lon Chemistry (~60 species) Fully-interactive with dynamics.	Long wave/short wave/EUV RRTMG IR cooling (LTE/non- LTE) Modal Aerosols CARMA Convection, precip., and cloud param. Parameterized GW Major/minor species diffusion (+UBC) Molecular viscosity and thermal conductivity (+UBC)	Parameterized electric field at high, mid, low latitudes. IGRF geomagnetic field. Auroral processes, ion drag and Joule heating Ion/electron energy equations Ambipolar diffusion Ion/electron transport Ionospheric dynamo Coupling with plasmasphere/mag netosphere	Horizontal: 1.9° x 2.5° (lat x lon configurable as needed) Vertical: 66 levels (0-140km) 81/126 levels 0-~600km Mesoscale- resolving version:0.25 deg/0.1 scale height.

Ionospheric Dynamics and Electric Dynamo in WACCM-X

d- π Coupler: dynamics-physics-ionosphere-electrodynamics (D-PIE) coupler Electric Dynamo: calculates global electric potential resulting from wind-driven ions ρ : density v: velocity T: temperature n: neutral i: ion e: electron Φ : electric potential

- Ion and electron energetics implemented
 - Thermal electron heating -> neutral temperature increase
- Improvements in thermosphere
 - Time dependent solar EUV input, O(³P) cooling, H escape flux, helium as a minor species (being tested)
- Parallel equatorial electrodynamo added using geomagnetic coordinates
- Ionospheric dynamics installed
 - Vertical diffusion ("ambipolar diffusion") of O⁺
 - Horizontal transport of O⁺ in the upper ionosphere
- O⁺(²P) and O⁺(²D) included in ion chemistry and energetics
- Bug fixes
 - Nighttime E-region ionization rate, EUV heating, CO₂ cooling
- Model domain vertically extended to $4x10^{-10}$ hPa, with $\frac{1}{4}$ scale height resolution
- Dynamical core now includes species dependent specific heat and gas constant (being tested)
- Reduced divergence damping -> improved tides (being tested)

- Ion and electron energetics implemented
 - Thermal electron heating -> neutral temperature increase
- Improvements in thermosphere
 - Time dependent solar EUV input, O(³P) cooling, H escape flux, helium as a minor species (being tested)
- Parallel equatorial electrodynamo added using geomagnetic coordinates
- Ionospheric dynamics installed
 - Vertical diffusion ("ambipolar diffusion") of O⁺
 - Horizontal transport of O⁺ in the upper ionosphere
- O⁺(²P) and O⁺(²D) included in ion chemistry and energetics
- Bug fixes
 - Nighttime E-region ionization rate, EUV heating, CO₂ cooling
- Model domain vertically extended to $4x10^{-10}$ hPa, with $\frac{1}{4}$ scale height resolution
- Dynamical core now includes species dependent specific heat and gas constant (being tested)
- Reduced divergence damping -> improved tides (being tested)

Previous WACCM-X Release

Current WACCM-X

Thermospheric Zonal Mean Temperature (January)

- Ion/electron energetics added
- Thermal electron heating results in higher thermospheric temperature
- Improvement when compared to TIE-GCM

TIE-GCM

- Ion and electron energetics implemented
 - Thermal electron heating -> neutral temperature increase
- Improvements in thermosphere
 - Time dependent solar EUV input, O(³P) cooling, H escape flux, helium as a minor species (being tested)
- Parallel equatorial electrodynamo added using geomagnetic coordinates
- lonospheric dynamics installed
 - Vertical diffusion ("ambipolar diffusion") of O⁺
 - Horizontal transport of O⁺ in the upper ionosphere
- O⁺(²P) and O⁺(²D) included in ion chemistry and energetics
- Bug fixes
 - Nighttime E-region ionization rate, EUV heating, CO₂ cooling
- Model domain vertically extended to $4x10^{-10}$ hPa, with $\frac{1}{4}$ scale height resolution
- Dynamical core now includes species dependent specific heat and gas constant (being tested)
- Reduced divergence damping -> improved tides (being tested)

Plasma Drifts

TIE-GCM

WACCM-X

- Interactive ionospheric electric wind dynamo produces plasma drifts
- Vertical and horizontal plasma drifts in good agreement with climatology and TIE-GCM
- Vertical drifts upward during day, downward at night, and a clear pre-reversal enhancement

WACCM-X Equatorial ExB Drifts: Model and Radar Observations (Solar Maximum)

- Ion and electron energetics implemented
 - Thermal electron heating -> neutral temperature increase
- Improvements in thermosphere
 - Time dependent solar EUV input, O(³P) cooling, H escape flux, helium as a minor species (being tested)
- Parallel equatorial electrodynamo added using geomagnetic coordinates
- lonospheric dynamics installed
 - Vertical diffusion ("ambipolar diffusion") of O⁺
 - Horizontal transport of O⁺ in the upper ionosphere
- O⁺(²P) and O⁺(²D) included in ion chemistry and energetics
- Bug fixes
 - Nighttime E-region ionization rate, EUV heating, CO₂ cooling
- Model domain vertically extended to $4x10^{-10}$ hPa, with $\frac{1}{4}$ scale height resolution
- Dynamical core now includes species dependent specific heat and gas constant (being tested)
- Reduced divergence damping -> improved tides (being tested)

Zonal Mean Electron Number Density WACCM-X TIE-GCM

With ionospheric dynamics, now get equatorial ionospheric anomaly pattern similar to TIE-GCM 13

WACCM-X lonosphere at ~250 km

Electron Density at 3e-8 hPa Time: 2000-01-19 22:59:59 - 2000-01-20 00:00:00

Mollweide projection centered on -180.00°E

- Electrodynamo and Ion transport
- Includes ambipolar diffusion, field-aligned transport, and ExB drifts
- A well-defined equatorial ionospheric anomaly is produced by the model.

- Ion and electron energetics implemented
 - Thermal electron heating -> neutral temperature increase
- Improvements in thermosphere
 - Time dependent solar EUV input, O(³P) cooling, H escape flux, helium as a minor species (being tested)
- Parallel equatorial electrodynamo added using geomagnetic coordinates
- Ionospheric dynamics installed
 - Vertical diffusion ("ambipolar diffusion") of O⁺
 - Horizontal transport of O⁺ in the upper ionosphere
- O⁺(²P) and O⁺(²D) included in ion chemistry and energetics
- Bug fixes
 - Nighttime E-region ionization rate, EUV heating, CO₂ cooling
- Model domain vertically extended to $4x10^{-10}$ hPa, with $\frac{1}{4}$ scale height resolution
- Dynamical core now includes species dependent specific heat and gas constant (being tested)
- Reduced divergence damping -> improved tides (being tested)

WACCM-X Temperature Tidal Amplitudes (DW1)

- In CAM, divergence damping set to a default value
- Results in lower amplitude and less variability of diurnal tides propagating through the atmosphere
- In WACCM/WACCM-X this has a significant impact in the mesosphere/thermosphere
- Optimum value for most realistic tides and stability still being investigated

Ionospheric Variability: Total Electron Content (TEC)

Reduced Divergence Damping

Reduced divergence damping increases TEC variability (dashed)

Next Step: Implementing an Ionosphere-Plasmasphere Model in WACCM-X

- Geomagnetic coordinate system
- Interhemispheric coupling
- Auroral-equatorial coupling of electrodynamics
- Field-aligned current approach to solving the global electric potential
- Capability for coupling to magnetospheric model

Continuing Development

- Clean up the code to be ready for inclusion in CAM trunk and CESM2
- Testing: helium as minor species, divergence damping, and species dependent specific heat and gas constant in dynamical core
- General verification/validation against observations and empirical models
- Perform SD-WACCM-X runs for targeted time periods with many available thermosphere and ionosphere observations (2009 and/or 2013 SSW periods) for further validation
- WACCM-X+DART for whole atmosphere data assimilation (HAO/DA Postdoctoral Fellow and Nick's talk)