Thermosphere-ionosphere integration work with WACCM-X at the Naval Research Laboratory (NRL)

F. Sassi (NRL)

S.E. McDonald (NRL), J.L. Tate (CPI), C. Metzler (NRL), D. Drob (NRL)

+ Bottom-side Ionosphere Weather Modeling Team at NRL

Special thanks to:

- C. Deluca and B. Oehmke (ESMF Team)
 - H.-L. Liu and J. McInerney (HAO)

Outline:

- Motivation
- Technical Approach
- Milestones
- To-do list

Overarching Goals

- The goal is to generate weather forecasts of the ionosphere to investigate:
 - The dynamics that reaches the lower thermosphere and couples the thermosphere with the ionosphere
 - The role of composition of the MLT in changing the characteristics of the D- and E-regions
 - The benefit of including weather at increasing resolution to improve HF radio-wave propagation.

Navy Extended Operational Environment

February 9, 2016

WAWG

Motivation

Variability of Ionospheric Weather

©NASA

• Solar radiation is the primary driver of ionospheric variation

 Lower-atmospheric weather accounts for up to 40% of the day-to-day variability observed in the ionosphere

WAWG

Immel et al., 2006.

Bottom-side Ionosphere Weather Modeling

How do environmental conditions (chemistry, solar drivers, and meteorology) affect radio-frequency wave propagation?

Physics-based model of the ionosphere. Dynamics and chemistry of 7 ion species from 85 km to > 20,000 km

Full Coupling

WA©CM Whole Atmosphere Community Climate Model

Global climate-chemistry model Solves dynamics, physics and chemistry globally from ground to ~500 km

WAWG

NAVGEM: Operational Navy Analysis (ground to ~92 km) 4DVAR Hourly data assimilation products

MoJo Radio-wave propagation code. Includes updated dispersion and attenuation. Capable of using observations & model data.

Produces ionograms (WSBI) for verification.

NRL-SAMI3

Ca⁺

02+

 $H^{+}(H_{2}O)_{n}$

Fe⁺

6

Solar

Driver

NO

Technical Approach

February 9, 2016

WAWG

8

Regridding using ESMF

We are taking advantage of the ESMF toolkit to handle regridding between the WACCM-X and SAMI3 models.

Sponsored by DoD, NASA, NSF and NOAA

A Slight complication

<u>Solution</u>: An analytical formulation (consisting of a horizontal projection and a vertical extension) for temperature, constituent densities and winds: based on diffusive equilibrium profiles and an orthonormal set of basis functions. Algorithm developed following *Drob et al.* (2003) for the NRL/G2S model.

Horizontal Projection

We seek a decomposition of temperature, constituents and winds in terms of spherical harmonics:

$$T(\lambda,\theta) = \sum_{n=0}^{N} \sum_{m=-n}^{+n} T_{m,n} Y_{m,n}(\lambda,\theta)$$

where λ is the longitude and θ is the co-latitude.

$$Y_{m,n}(\lambda,\theta) = Y_{m,n}^0 e^{im\lambda} \mathcal{L}_{m,n}(\cos(\theta))$$

February 9, 2016

WAWG

Vertical Extension: Bates profiles

Assuming diffusive equilibrium, Bates vertical profiles describe the equilibrium temperature and densities. For temperature:

$$T(\zeta) = T_{ex} - (T_{ex} - T_0)e^{-\sigma(\zeta - \zeta_0)}$$

where T_{ex} is the exospheric temperature, T_0 is the temperature at a reference level ζ_0 . For densities (with n_{x0} a reference density profile):

$$n_{x}(\zeta) = n_{x0} \begin{bmatrix} T_{0} / T(\zeta) \end{bmatrix}^{1+\gamma} e^{-\sigma\gamma(\zeta-\zeta_{0})}$$
$$\gamma = \frac{m_{x}g}{\sigma k_{b}T_{ex}} \qquad \sigma = \frac{(T_{z})|_{\zeta_{0}}}{T_{ex} - T_{0}}$$

with:

Zonal and meridional winds are assumed constant in altitude above the exobase. February 9, 2016 WAWG

N = 15

N = 31

Milestones

WACCM-X

Milestones

- ✓ Regridding: ESMF
- ✓ Vertical extension: Analytical formulation
- ✓ Optimization: MPI (longitude) & OpenMP (fieldline transport)
- ✓ Restart facility
- ✓ netCDF output
- namelist controls
- lons

One-way coupling (WACCM-X → ionosphere) is completed.

To-do List

TBD in FY16

- Two-way coupling:
 - Ion drag (momentum tendency)
 - Electron temperature heating (temperature tendency)

Summary & Final Thoughts

- NRL /Space Science Division is coupling the WACCM-X thermosphere with the ionosphere of the NRL/SAMI3 model:
 - Scientific challenges: Coupling the thermosphere up to the exobase with the ionosphere to $8 R_e$
 - Computational challenges: Achieving code efficiency and accuracy
 - Operational challenges: Atmospheric weather effects on the D-region absorption and E-regions HF transmission.
- One-way coupling is close to completion and includes:
 - Full re-gridding between the WACCM grid and the field-lines grid.
 - Analytical formulation of vertical extension for neutrals above the WACCM-X lid
 - NetCDF output and namelist controls
 - Initial MPI and OpenMP implementations, but more work needs to be done
 - An exhaustive comparison of the SAMI3 ions to WACCM's has not been done yet.
- A two-way coupling is next and should (!) be relatively straightforward.