

Incorporating realistic surface LW spectral emissivity into the CESM Model: Impact on simulated climate and the potential sea-ice emissivity feedback mechanism

Xianglei Huang

University of Michigan

Xiuhong Chen & Mark Flanner (Univ. of Michigan), Ping Yang (Texas A&M), Dan Feldman and Chiancy Kuo (LBL, DoE)

> CESM AWG meeting February 28, 2017

Acknowledgement: DoE BER ESM-SciDAC program

Outline

- Motivation
 - Surface emissivity in general
 - Surface emissivity in climate models
 - How has it been treated
 - What could be biased with such treatments?
- Incorporate surface spectral emissivity into the CESM
 - Global surface spectral emissivity dataset for the entire LW spectrum
 - Consistency with the surface modules
 - "Sanity check"
- Impact on simulated climatology
- Impact on simulated climate change (2xCO2 equilibrium run)
- Conclusions and discussions

Part I: motivations

• Surface emissivity $\varepsilon_v(\theta) = \frac{I(\theta)_{s_v}^{\uparrow}}{B_v(T_s)}$

A function of frequency and solid angle

- Routine retrieval products from hyperspectral soundings (e.g. AIRS, IASI, CrIS) but only in mid-IR
- Also measureable in-situ or in the lab (ASTER Spectral Library)
- But **Few** measurements in the far-IR (<650cm⁻¹)
 - Traditional thoughts:
 - Far-IR water vapor absorption is strong
 - Atmosphere is opaque
 - Surface emissivity is little of important

No far-IR (>15µm) measurements

Surface emissivity in current models

In Atmospheric model (RRTMG_LW)

- ε_v =1: Surface is always assumed to be a blackbody
- Almost all GCMs and NWP models assume this
 Exception: NASA GISS models
- Take LW flux from coupler/surface modules

Ocean surface is assumed to be blackbody

In Land model (CLM)

- Gray emissivity is assume (NOT a function of v)
 - 0.97 for snow and nonurban ground
 - 0.96 for urban ground
- Upward flux at surface is explicitly computed
- Radiative skin temperature is computed and passed onto Atmospheric model

$$\mathcal{E}\sigma T^4_{ground} + (1 - \mathcal{E})F^{\downarrow}_{sfc} = F^{\uparrow}_{LW_sfc}$$
 (non-veg land)

Emission Reflection

 $F_{LW sfc}^{\uparrow} = \sigma T_{skin}^{4}$

Issues:

- Spectral variation of surface emissivity ignored
- Cannot simply change ε in RRTMG_LW to realistic values and still using the same T_{skin}

$$\varepsilon_{v} = \frac{F_{s_{v}}^{\uparrow}}{\pi B_{v}(T_{s})}$$

Models: what's the traditional wisdom to assume BB in AGCM?

$$τ_{v} >> 1$$

 $F_{v} \downarrow (z=0)$

$$(1-ε_{v})F_{v} \downarrow (z=0)$$
 $ε_{v} \pi B_{v}(Ts)$
Surface (ε_v)

$$\mathcal{E}_{v} = \mathbf{A}_{v}$$

$$r_{v} = 1 - A_{v} = 1 - \mathcal{E}_{v}$$

Upward flux at surface

$$\tau_{v} < \text{ or } \tau_{v} \sim 1$$

$$F_{v} \downarrow (z=0) \qquad (1-\varepsilon_{v})F_{v} \downarrow (z=0) \qquad \varepsilon_{v} \pi B_{v}(Ts)$$
Surface (ε_{v})

 Chen et al., 2014, GRL, doi:10.1002/2014GL061216

$$F^{\uparrow}(z=0) = \varepsilon_{v} \pi B_{v}(T_{s}) + (1-\varepsilon_{v}) F_{v}^{\downarrow}(z=0)$$

if $\varepsilon_{v} \sim 1$ or $F_{v}^{\downarrow}(z=0) \approx \pi B_{v}(T_{s})$ (e.g. H₂O and CO₂ band)
 $F^{\uparrow}(z=0) \cong \pi B_{v}(T_{s})$

Where does this wisdom break down? 1. IR window region 2. High altitude/High latitude (Chen et al., 2014)

LW coupling between surface and atmosphere

Having the broadband flux @surface correct is not enough.

- 1. The atmosphere absorption and emission is spectrally dependent.
- 2. A wrong band-by-band partitioning of LW flux at surface could lead to a wrong OLR at TOA. Thus, it could lead to a wrong column radiative cooling rate in the atmosphere as well.

A toy 1-layer atmosphere to illustrate above points (100 photons from sfc)

Possible Impact on simulated climate change

Feldman et al., 2014, PNAS, doi:

10.1073/pnas1413640111.

- Only looked at far-IR
- Only modified RRTMG_LW to include emissivity. F_{LW}@sfc not the same in CAM and in surface modules

Reflection of downward flux can complicate the analysis

Recap

- Surface spectral emissivity treatment can be improved. Know the physics, have (mid-IR) obs.
- Reducing biases due to this treatment can help exposing compensating biases and errors due to other issues.

Incorporate surface spectral emissivity into the CESM

Develop and Validation of a global dataset of surface spectral emissivity (Huang et al., 2016, JAS, doi:10.1175/JAS-D-15-0355.1)

Basic approaches

- First-principle calculations for both far-IR and mid-IR
 - Starting point: Composition and Index of refraction
 - Validate as much as possible with available data set
- Define 11 different surface types (some has subtypes)
- •Regress with MODIS retrieved surface emissivity at 8 mid-IR wavelengths and 0.05°×0.05° spatial resolutions to decide surface type defined in our study
- Averaged onto 0.5°×0.5° grid
- \bullet Validation: compare with IASI mid-IR retrievals of spectral emissivity at 0.5° $\!\!\times\!0.5^{o}$ grid and at RRTMG_LW bands
- Far-IR as calculated

Usage

- Options 1: Gridded surface spectral emissivity for 12 calendar months
- Options 2: Spectral emissivity for surface types used in GCMs (make it a prognostic variable)

Incorporate surface spectral emissivity into the CESM v1.1.1

 $\boldsymbol{\epsilon}_{i}\text{:}$ emissivity in each RRTMG_LW band

- This treatment ensures F[↑]_{LW} being the same across different modules.
- A sanity check: if we set ε_i=1, the simulation should be the same as the standard CESM simulation (up to numerical errors in solving the equation above)
- A note: Cheng et al. (2016, JQSRT) benchmarked RRTMG_LW for the RT calculation in the presence of surface spectral emissivity

Differences between ϵ_i =1 run and standard CESM run

After 3 hours of integration

Simulation set-up

- Land surface spectral emissivity prescribed for each calendar month.
- Spectral emissivity over oceans is weighting sum of $\varepsilon_{\rm water}$ and $\varepsilon_{\rm ice}$.
- Slab-ocean and fully-coupled run both used. 30year output analyzed for each.

TOA imbalance: no additional tuning needed

Global mean energy budget

	Slab-ocean run		Fully coupled run			
	Standard CESM	Difference	Standard	Difference		
		(Modified –	CESM	(Modified –		
		Standard)		Standard)		
Surface energy budget						
LW flux (Wm^{-2})	401.2	2.26	400.8	1.00		
LW flux \downarrow (Wm ⁻²)	344.6	3.16	343.9	1.79		
SW flux↑(Wm ⁻²)	22.8	-0.38	22.7	-0.17		
SW flux↓(Wm ⁻²)	181.4	-0.44	181.4	-0.27		
Latent heat flux (Wm ⁻²)	83.4	1.01	83.1	0.59		
Sensible heat flux (Wm ⁻²)	18.0	-0.20	18.0	-0.10		
Energy imbalance (Wm ⁻²)	-0.6	-0.03	-0.7	-0.2		
TOA energy budget						
LW flux (Wm^{-2})	235.2	0.19	235.1	-0.15		
SW flux↑(Wm ⁻²)	106.7	-0.25	106.7	-0.06		
Energy imbalance (W m ⁻²)	0.06	-0.06	-0.07	-0.21		
Others						
Net column radiative cooling	103.4	0.78	103.1	0.47		
(Wm ⁻²)						
Surface temperature (K)	288.7	0.78	288.6	0.54		
Precipitation (mm/day)	2.88	0.03	2.87	0.02		

Slab-ocean run

High-latitude regions; Sahara desert; Gobi desert (to some extent)

Fully coupled run

Sea ice emissivity feedback: 2-sided PRP methods for 2xCO₂ and control run

Spectral decomposition of the sea-ice emissivity feedback

Feedback analysis

	Slab-ocean run		Fully coupled run	
Feedbacks	Standard	Modified	Standard	Modified
(Wm ⁻² per K)	CESM	CESM	CESM	CESM
Planck	-3.06	-3.07	-3.11	-3.11
Lapse rate (LR)	-0.18	-0.23	-0.49	-0.52
Water vapor (WV)	1.33	1.37	1.52	1.50
LR+WV	1.15	1.15	1.02	0.99
Albedo	0.37	0.37	0.30	0.30
Cloud	0.50	0.51	0.49	0.52
Sea-ice emissivity	N/A	-0.004	N/A	-0.003
Total	-1.04	-1.05	-1.30	-1.29

Conclusions and discussions

- Including surface spectral emissivity
 - Surface energy budget: LW vs. latent heat flux
 - Affect climatology, especially regional Ts and sea ice fraction (reduce some modeled biases)
 - Little impact on simulated global climate change
- Next: Consistency of RT across modules
- Next: When surface in LW is reflective
 - Cold and dry polar regions: BB peak emission shifts to far-IR
 - Ice cloud has a peak of scattering in far-IR (350-450 cm⁻¹)
 - Thus, multiple reflection between surface and cloud: possible more absorption along the path!

(Chen et al., 2014, GRL)

Thank you!

References:

1. Huang et al., An observationally based global band-by-band surface emissivity dataset for climate and weather simulations, *J. Atmos. Sci.*, 73, 3541-3555, doi:10.1175/JAS-D-15-0355.1, 2016.

2. Cheng, H. Z., X.H. Chen, X. L. Huang, Quantification of the Errors Associated with the Representation of Surface Emissivity in the RRTMG_LW, *JQSRT*, 180, 167-176, doi:10.1016/j.qsrt.2016.05.004, 2016.

3. Chen, X. H., X. L. Huang, M. G. Flanner, Sensitivity of modeled far-IR radiation budgets in polar continents to treatments of snow surface and ice cloud radiative properties, *Geophs. Res. Letts.*, doi:10.1002/2014GL061216, 41(18), 6530-6537, 2014.

Backup slide

Modified – Standard CESM

First-principle simulation of the pan-spectral emissivity

11 types: water, fine snow, medium snow, coarse snow, ice, grass, dry grass, conifer, deciduous, desert (16 sub-types), and a combination of desert and grass.

Usage of the data set

- Use data set for 2000-2015 period (MODIS era)
- Use data set for each calendar month
- Use the surface emissivity by type in the model (prognostic)

http://www-personal.umich.edu/~xianglei/emissivity.html

Surface ID	Surface Type
1	Grass
2	Dry grass
3	Decidous
4	Confier
5	Water
6	Fine snow
7	Medium snow
8	Coarse snow
9	lce
10	Desert (subtypes included for fitting observations)
11	45% desert and 55% grass

Has this LW_UP_FLUX been computed correctly in the GCMs? If not, by how much and what's the impact?

Water and Ice surface: Fresnel equation

Modeling the snow surface emissivity

Deserts

50% sand grain (planar) and 50% find grain (silt)

6 sites in Namib Desert and 8 sites in Kalahari Desert

Differences between two retrievals in January

-0.05

-0.1

-0.15

0.05

0

0.1

0.15

At far-IR, Surface can be "visible" from space

- Change of far-IR flux alone at TOA due to 1K change of surface temperature
- Surface emissivity can be important in far-IR for high-elevation regions (cold and dry)
- Chen et al. (2014) assessed the impact of surface emissivity and LW cloud scattering on far-IR radiation budget (off-line evaluation)
 - Chen, X. H., X. L. Huang, M. G. Flanner, 2014: Sensitivity of modeled far-IR radiation budgets in polar continents to treatments of snow surface and ice cloud radiative properties, *Geophysical Research Letters*, 41, doi:10.1002/2014GL061216.

Water emissivity: change with heta

Measurements compiled by Mironova (1973),

Water emissivity: changes with wind speed

Difference between our data set and IASI retrievals in January

Similar comparison results in other calendar months

Four places (A to D). Place A (desert surface at 23°N,27°E Place B (combined desert and grass surface at 25°S,135°E) Place C (grass surface at 60°N,90°E) Place D (snow surface at 80°S, 30°E).

(b) July

500

500

10µm

1000

1000

Wavenumber(cm⁻¹)

AS

[€]Sim 'EIASI

-EIASI ^ESim

6.67µm

1500

1500

5μm

2000

2000

Surface emissivity

MODIS retrievals http://cimss.ssec.wisc.edu/iremis/data/

 $F_{\underline{s_v}}$

 $\mathcal{E}_{v} =$

