Sensitivity of the Pacific Cold Tongue and Double-ITCZ Biases to Convective Parameterization

Matthew Woelfle¹

email: woelfle@atmos.washington.edu | twitter: @mdwoelfle

Sungduk Yu², Chris Bretherton¹, Mike Pritchard² ¹University of Washington, Seattle, WA ²University of California-Irvine, Irvine, CA

2017 AMWG Meeting, Boulder, CO 2017-02-28

This work was funded by NSF AGS-1419507, NSF AGS-1419518, and the Department of Defense through the NDSEG Program.

High-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) was provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation.

Simulated equatorial sea surface temperatures are too cold.

Excess rainfall in the southeast Pacific; Insufficient rainfall on the equator

Precipitation biases amplified when coupled.

These biases are found in the CESM-LENS.

Precipitation rate mm/day Min = 0.04 Max = 29.59 0.20.5 1 2 3 4 5 6 7 8 9 10 12 14 17 Precipitation (LENS.002-GPCP) mm/day mean = 0.56 Min = -4.35 Max = 21.575

Precipitation (LENS.002)

http://www.cesm.ucar.edu/experiments/cesm1.1/LE/

Suggested bias sources

- Extratropical controls
 - e.g. Hwang and Frierson (2013); Kay et al. (2016); Hawcroft et al. (2016)
- Coupled ocean-atmosphere feedbacks
 - e.g. Zhang et al. (2007), Liu et al. (2012)
- Inadequate convective parameterization
 - e.g. Song and Zhang (2009), Oueslati and Bellon (2015)

Suggested bias sources

- Extratropical controls
 - e.g. Hwang and Frierson (2013); Kay et al. (2016); Hawcroft et al. (2016)
- Coupled ocean-atmosphere feedbacks
 - e.g. Zhang et al. (2007), Liu et al. (2012)
- Inadequate convective parameterization
 - e.g. Song and Zhang (2009), Oueslati and Bellon (2015)

If convection plays a key role in coupled tropical feedbacks related to the double-ITCZ and cold tongue biases, **perturbations to convective parameterization should influence the development of these biases.**

Model simulations use CESM1

Atmosphere (2°) CAM5, Finite Volume Prescribe Aerosols

<u>Comparison datasets</u> GPCP (Huffman et al., 2009)

Precipitation

SODA (Carton and Geiss, 2008)

- Sea surface temperature (SST)
- Surface wind stress (τ)
- Ocean velocities

[1] Spin up model components

Ocean/Sea Ice [1] (CORE2 Forced; Large and Yeager, 2009)

> Atmosphere IC (ERA Interim)

Land (CAS Atmo. Forcing; Qian et al., 2006) 0

Initial conditions for coupled run taken from this point

- [1] Spin up model components
- [2] Run stand alone models forward

Land (CAS Atmo. Forcing; Qian et al., 2006)

Initial conditions for coupled run taken from this point Matthew Woelfle | 2017 CESM AMWG Meeting | 2017-02-28

- [1] Spin up model components
- [2] Run stand alone models forward
- [3] Initialize fully coupled simulations from stand alone simulations

Initial conditions for coupled run taken from this point

- [1] Spin up model components
- [2] Run stand alone models forward
- [3] Initialize fully coupled simulations from stand alone simulations

[4] Repeat [2,3] for multiple start dates

J Initial conditions for coupled run taken from this point

- [1] Spin up model components
- [2] Run stand alone models forward
- [3] Initialize fully coupled simulations from stand alone simulations
- [4] Repeat [2,3] for multiple start dates
- [5] Repeat [1-4] for multiple convective parameterizations

Initial conditions for coupled run taken from this point

Convective parameterizations used

Precipitation: Jan-June 1981

Convective parameterization affects meridional width of dry zone.

Convective parameterization affects meridional width of dry zone.

All simulations produce excess SE Pacific rainfall.

No consistent change in double-ITCZ bias.

No consistent change in double-ITCZ bias.

100 m ΔO cean Heat Content: Jan-June 1981 mean

100 m ΔO cean Heat Content: Jan-June 1981 mean

100 m ΔO cean Heat Content: Jan-June 1981 mean

100 m Δ OHC: Jan-June 1981 mean

 $Cold Tongue Index = OHC(3^{\circ}S: 3^{\circ}N, 180^{\circ}: 220^{\circ}E) - OHC(20^{\circ}S: 20^{\circ}N, 150^{\circ}E: 250^{\circ}E)$

100 m Δ OHC: Jan-June 1981 mean

$Cold Tongue Index = OHC(3^{\circ}S: 3^{\circ}N, 180^{\circ}: 220^{\circ}E) - OHC(20^{\circ}S: 20^{\circ}N, 150^{\circ}E: 250^{\circ}E)$

More negative = Stronger cold tongue

Cold tongue index

SP cold tongue improves

NODC cold tongue worsens

SP cold tongue improves

Majority of bias develops in first 3 months

NODC cold tongue worsens

Ocean Heat Budget

NODC cooler due to enhanced upwelling

SP warmer due to reduced zonal advection

Surface pressure: Jan-June 1981 mean

Surface pressure: Jan-June 1981 mean

Surface pressure: Jan-June 1981 mean

What is going on with SP?

Zonal Velocity: Jan 1981

Zonal Velocity: Jan 1981

Zonal Velocity: Jan 1981

Surface wind decouples in SP

Convective parameterization changes...

Produce no consistent change in the double ITCZ bias.

Affect the strength of the Pacific cold tongue bias through ocean advection and zonal wind stress.

Can be related to vertical convective momentum fluxes and large scale pressure field

Matthew Woelfle | EMAIL: woelfle@atmos.washington.edu | TWITTER: @mdwoelfle

Convective parameterization changes...

Produce no consistent change in the double ITCZ bias.

Affect the strength of the Pacific cold tongue bias through ocean advection and zonal wind stress.

└→ Can be related to vertical convective momentum fluxes and large scale pressure field

Matthew Woelfle | EMAIL: woelfle@atmos.washington.edu | TWITTER: @mdwoelfle

Remaining questions

Why is double-ITCZ bias insensitive to convective parameterization?

Why did CESM2's double-ITCZ disappear?

Can we predict the bias response from AMIP-style simulations?

Does the SP cold tongue degrade with inclusion of convective momentum flux parameterization?

Longer simulation shows moderate improvement with superparameterization **Fixed SST** simulations versus **fully coupled** simulations for <u>CTRL</u> and <u>NODC</u> (SP simulations yet to be analyzed)

100 m <u>O</u>cean <u>H</u>eat <u>C</u>ontent: Jan-June 1981 mean

Surface wind stress and zonal currents

The geostrophic zonal current

$$M_G = \frac{1}{\beta} \int_x^{x_e} \frac{d}{dy} (\nabla \times \tau) dx - \frac{\tau_y}{f}$$

is the zonally integrated meridional gradient of surface wind stress curl plus Ekman transport