(Preliminary analysis of) Diurnal cycles in land carbon fluxes and imprint on atmospheric CO₂

Gretchen Keppel-Aleks gkeppela@umich.edu University of Michigan

Thank you to: Dave Lawrence, Cecile Hannay, Keith Lindsay, Anthony Torres Why evaluate the diurnal cycle?

Seasonal cycle in carbon fluxes is tied to strong seasonal forcings (temperature, radiation)

Evaluating fluxes over a range of timescales yields greater confidence that sensitivities and mechanisms are faithfully represented in land models

Diurnal cycle in May solar radiation at Park Falls, Wisconsin

Seasonal cycle of NEE at Park Falls, Wisconsin

Seasonal cycle of NEE at Park Falls, Wisconsin

Seasonal cycle of NEE at Park Falls, Wisconsin 3 **Ameriflux** 2 **CESM2.0** Flux [μ mol m⁻² s⁻¹] 1 0 -1 -2 -3 10 -4 Ν D F S Μ Α 0 Μ J Α 5 Month NEE [umol m⁻² s⁻¹] 0 -5 -10 lune

0

-15

5

10

11.....

15

20

Seasonal cycle of NEE at Park Falls, Wisconsin 3 **Ameriflux** 2 **CESM2.0** Flux [μ mol m⁻² s⁻¹] 1 0 -1 -2 -3 10 -4 D Ν F S Μ Α 0 5 Μ J A NEE [umol m⁻² s⁻¹] Month 0 -5 -10 July -15 5 10 15 20 0 Hour

Seasonal cycle of NEE at Park Falls, Wisconsin 3 **Ameriflux** 2 **CESM2.0** Flux [μ mol m⁻² s⁻¹] 1 0 -1 -2 -3 10 -4 D Ν F S Μ Α 0 Μ 5 J A NEE [umol $m^{-2} s^{-1}$] Month 0 -5 -10 August -15 10 15 20 5 0 Hour

Seasonal cycle of NEE at Park Falls, Wisconsin 3 **Ameriflux** 2 **CESM2.0** Flux [μ mol m⁻² s⁻¹] 1 0 -1 -2 -3 10 -4 S Ν D F Μ Α 0 5 J Μ Α NEE [umol m⁻² s⁻¹] Month 0 -5 -10 September -15 10 15 20 5 0 Hour

Seasonal cycle of NEE at Park Falls, Wisconsin

figure: Ed Browell

Evaluating CESM against flux towers may not be representative due to heterogeneity

Diurnal Rectifier at Park Falls, Wisconsin

The vertically integrated mixing ratio, X_{CO2}

Variations in X_{CO2} are directly related to mass fluxes.

Crisp et al., 2005; Washenfelder et al., 2006; Keppel-Aleks et al., 2012

Synoptic activity complicates column drawdown and local flux at Park Falls

CESMI performed favorably relative to empirical terrestrial ecosystem models for diurnal drawdown at Manaus

Seasonal variations in column CO_2

TCCON

CESM zonal mean

CESM

20

40

60

80

0

 \times

Total column CO₂ suggests that CESM northern hemisphere NEP is small during the growing season by 50%.

Keppel-Aleks et al., 2013

Column mean annual cycle at Park Falls, Wisconsin

TCCON8.7 ppmCESM 2.07.3 ppmCESM1.03.7 ppm

Mean annual cycle at Southern Great Plains

CESMI performed favorably relative to empirical terrestrial ecosystem models for diurnal drawdown at Manaus

Diurnal column drawdown at Park Falls, Wisconsin

1

Mean annual cycle in CO_2 is underestimated by 15-25% in CESM2, in contrast to >60^ in CESM1

Comparisons at

—smaller spatial scales (annual cycle of NEE) —shorter time scale (diurnal fluxes & CO₂) provide opportunities to understand the skill of the mechanisms in CLM

Postdoctoral Positions at University of Michigan

NASA-funded project to understand the role of soil moisture in controlling carbon and energy fluxes

- CLM5
- SMAP (Soil Moisture Active Passive) satellite
- SIF (solar-induced fluorescence) from satellites

NASA-funded project to understand the amplification of the CO_2 mean annual cycle

- CESM
- CO₂ from flasks, aircraft, TCCON
- GEOS-Chem atmospheric transport model

Please contact: gkeppela@umich.edu