Understanding the Causes and Implications of Enhanced Seasonal CO₂ Exchange in Boreal and Arctic Ecosystems

Brendan Rogers and Gretchen Keppel-Aleks

Co-l's: Scott Goetz, Sue Natali, Christopher Schwalm, Amber Soja Collaborators: Bruce Cook, Matt Hansen, John Kimball, Jeffrey Masek, Bill Riley, Kevin Schaefer NASA

(Graven et al., 2013)

(Graven et al., 2013)

10

J

Μ

detrended CO₂ (ppm)

(Graven et al., 2013)

(Graven et al., 2013)

(Zhao and Zeng, 2014)

(Murray-Tortarolo et al., 2013)

Hypotheses

Growing season productivity	Winter respiration
Climate (summer warming)	Climate (winter warming)
CO ₂	Productivity (labile substrates)
N deposition	Snow (cover and depth)
Veg-tundra	Vegetation
Veg-boreal-cover	Delayed gas diffusion
Veg-boreal-deciduous	
Veg-boreal-age	
Permafrost (plant-available N & H ₂ O)	
	1929
Temperature Trend °C/century	AND THE STATE AND

-0.8 -1 -1.2 -1.4 -1.6 -1.8 -2 2009

- Develop benchmarks from CO₂ flask data, total column observations, and aircraft campaigns
- Use GEOS-Chem to transport CO₂ tracers
- Test seasonal cycle amplitude, amplitude trends by latitude, monthly (shape) trends, N-S gradients by latitude and season, and IAV (among others, e.g. ILAMB)
- Challenge to separate meaningful changes from model biases in diagnostics
- Develop framework that can be used to quantify contribution from hypothesized mechanisms

Atmospheric CO₂

- Develop benchmarks from CO₂ flask data, total column observations, and aircraft campaigns
- Use GEOS-Chem to transport CO₂ tracers
- Test seasonal cycle amplitude, amplitude trends by latitude, monthly (shape) trends, N-S gradients by latitude and season, and IAV
- Challenge to separate meaningful changes from model biases in diagnostics
- Develop framework that can be used to quantify contribution from hypothesized mechanisms

(Keppel-Aleks et al., 2013)

- Develop benchmarks from CO₂ flask data, total column observations, and aircraft campaigns
- Use GEOS-Chem to transport CO₂ tracers
- Test seasonal cycle amplitude, amplitude trends by latitude, monthly (shape) trends, N-S gradients by latitude and season, and IAV
- Challenge to separate meaningful changes from model biases in diagnostics
- Develop framework that can be used to quantify contribution from hypothesized mechanisms

Atmospheric CO₂

- Develop benchmarks from CO₂ flask data, total column observations, and aircraft campaigns
- Use GEOS-Chem to transport CO₂ tracers
- Test seasonal cycle amplitude, amplitude trends by latitude, monthly (shape) trends, N-S gradients by latitude and season, and IAV
- Challenge to separate meaningful changes from model biases in diagnostics
- Develop framework that can be used to quantify contribution from hypothesized mechanisms

Additional benchmarks

- Gridded flux products (upscaled FLUXCOM, MODIS, TCF, SMAP L4_C, SIF)
- Synthesis of *in situ* seasonal fluxes (tundra, boreal forest), focus on functional relationships
- Changes to arctic-boreal vegetation and fire regimes

Changes to arctic-boreal landscape

- Focus on landscape-level, ecosystem-type attributes, especially as linked w/disturbance
 - Tractable given current & expected data sets
 - Directly relate to CLM & other land models
 - Should impact seasonal CO₂ fluxes (Forkel et al., 2016)

Changes to arctic-boreal landscape

Fire Databases

North America

Eurasia-Russia

Changes to arctic-boreal landscape

Fire Databases

North America

Eurasia-Russia

- New AVHRR-based continuous fields (0.05°, 1981-present, Hansen) = changing PFTs
- Burned area + PFTs = severity, mortality, succession trajectories, and evolving stand age
- Additional constraints on changing productivity vs. vegetation structure from GIMMS_{3g} products
- Regional validation with ABoVE datasets

Potential model developments

- Optimize boreal-arctic PFT productivity, with a focus on post-fire trajectories
- Incorporate new mechanistic representation of respiration in frozen soils, accounts for thin water films surrounding soil particles (Schaefer and Jafarov, 2016)
- Add CO₂ diffusion through the soil and root conductive tissue as has been done for CH₄ (Riley et al., 2011)
- Add heat from exothermic respiration into soil column
- Play with phenology routines (e.g., Forkel et al., 2014; Chen and Che 2016) to address early spring GPP bias

Model experiments

Growing season productivity	Winter respiration
Climate (summer warming)	Climate (winter warming)
CO ₂	Productivity (labile substrates)
N deposition	Snow (cover and depth)
Veg-tundra	Vegetation
Veg-boreal-cover	Delayed gas diffusion
Veg-boreal-deciduous	
Veg-boreal-age	
Permafrost (plant-available N & H ₂ O)	

We're looking for good postdocs!!

Brendan Rogers brogers@whrc.org

Gretchen Keppel-Aleks gkeppela@umich.edu

- Develop benchmarks from CO₂ flask data, total column observations, and aircraft campaigns
- Use GEOS-Chem to transport CO₂ tracers
- Test seasonal cycle amplitude, amplitude trends by latitude, monthly (shape) trends, N-S gradients by latitude and season, and IAV
- Challenge to separate meaningful changes from model biases in diagnostics
- Develop framework that can be used to quantify contribution from hypothesized mechanisms

- Develop benchmarks from CO₂ flask data, total column observations, and aircraft campaigns
- Use GEOS-Chem to transport CO₂ tracers
- Test seasonal cycle amplitude, amplitude trends by latitude, monthly (shape) trends, N-S gradients by latitude and season, and IAV
- Challenge to separate meaningful changes from model biases in diagnostics
- Develop framework that can be used to quantify contribution from hypothesized mechanisms

- Develop benchmarks from CO₂ flask data, total column observations, and aircraft campaigns
- Use GEOS-Chem to transport CO₂ tracers
- Test seasonal cycle amplitude, amplitude trends by latitude, monthly (shape) trends, N-S gradients by latitude and season, and IAV
- Challenge to separate meaningful changes from model biases in diagnostics
- Develop framework that can be used to quantify contribution from hypothesized mechanisms

