Using superfast chemistry to emulate MOZART within the CESM CAM-Chem: Strengths, weaknesses, and possibilities

Benjamin Brown-Steiner

Noelle Selin, Ron Prinn,

Louisa Emmons, Simone Tilmes

MIT JOINT PROGRAM ON THE SCIENCE AND POLICY OF GLOBAL CHANGE

Using superfast chemistry *instead of* MOZART within the CESM CAM-Chem: Strengths, weaknesses, and possibilities

Benjamin Brown-Steiner

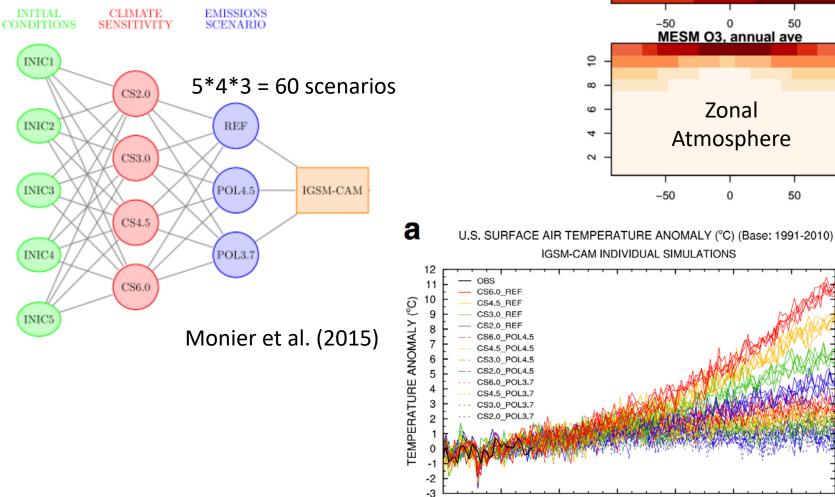
Noelle Selin, Ron Prinn,

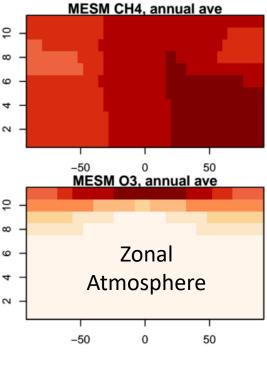
Louisa Emmons, Simone Tilmes

MIT JOINT PROGRAM ON THE SCIENCE AND POLICY OF GLOBAL CHANGE

Outline

- Superfast is Super Simple
 - So it's super fast
 - But it's also sometimes not so great...
- What it does well
- What it does poorly
- "Emulation"
 - "Calibrated" with MOZART
- Can it be fixed?


CHEMISTRY Photolys	is	Superta	3S	st
[j2oh->,jo3_a]	$\begin{array}{l} 03 + hv -> 2*0H \\ H202 + hv -> 2*0H \\ N02 + hv -> N0 + 03 \\ CH20 + hv -> C0 + 2*H02 \\ CH20 + hv -> C0 \\ CH300H + hv -> CH20 + H02 + 0H \end{array}$	Cameron-Smit	∶h e	et a
Reaction	S			
	03 + 0H -> H02 + 02		;	1.70
[out6]	H02 + 03 -> 2*02 + 0H		;	1.00
[usr_H02_H02]	H02 + 0H -> H20 + 02 H02 + H02 -> H202 + 02		;	4.80
	H202 + OH -> H20 + H02		;	1.80
	N0 + 03 -> N02 + 02		;	3.00
	$H02 + N0 \rightarrow N02 + 0H$;	3.50
	NO2 + OH + M -> HNO3		;	1.80
[usr_oh_co]	CH4 + OH -> CH3O2 + H2O CO + OH -> HO2		;	2.45
[451_01]_00]	CH20 + 0H -> C0 + H20 + H02		;	5.50
	CH302 + H02 -> CH300H + 02		;	4.10
	CH300H + 0H -> CH302 + H20		;	2.70
	CH300H + 0H -> CH20 + H20 + 0H		;	1.10
	CH302 + N0 -> CH20 + H02 + N02		;	2.80
	CH302 + CH302 -> 2*CH20 + 0.80*H02		4	9.50
[het_no2_h2o]	H20 + N02 -> 0.50*HN03		'	
	DMS + 0H -> S02		;	1.10
[usr_oh_dms]	DMS + OH -> 0.75*S02			
[aq_so2_h2o2]	0H + S02 + M -> S04 H202 + S02 -> S04		;	3.30
[aq_so2_o3]	03 + S02 -> S04			
*[isop_oh]	ISOP + OH -> 2*CH302 -1.5*OH		;	2.70
[isop_oh]	ISOP + OH -> 2*CH302		;	2.70
	ISOP + OH -> ISOP		;	2.70
	ISOP + OH -> ISOP + 0.5*OH		;	2.70
[isop_o3]	ISOP + 03 -> 0.87*CH20 + 1.86*CH302 +	0.06*H02 + 0.05*C0	;	5.59


Superfast Chemistry

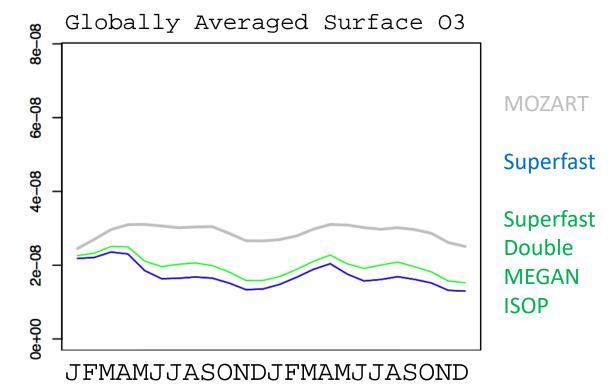
al. (2006) + ACCMIP

<pre>; 1.800E-12 ; 3.000E-12, -1500 ; 3.500E-12, 250 ; 1.800E-30, 3.00, 2.800E-11, 0.00, 0 ; 2.450E-12, -1775 ; 5.500E-12, 125 ; 4.100E-13, 750 ; 2.700E-12, 200 ; 1.100E-12, 200 ; 2.800E-12, 300 ; 9.500E-14, 390 ; 1.100E-11, -240 ; 3.300E-31, 4.30, 1.600E-12, 0.00, 0 ; 2.700E-11, 390 ; 2.700E-11, 390 ; 2.700E-11, 390 ; 2.700E-11, 390 ; 2.700E-11, 390 ; 2.700E-11, 390</pre>		;	1.700E-12, 1.000E-14, 4.800E-11,	-490			
; 4.100E-13, 750 ; 2.700E-12, 200 ; 1.100E-12, 200 ; 2.800E-12, 300 ; 9.500E-14, 390 ; 1.100E-11, -240 ; 3.300E-31, 4.30, 1.600E-12, 0.00, 0 ; 2.700E-11, 390 ; 2.700E-11, 390 ; 2.700E-11, 390 ; 2.700E-11, 390		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	3.000E-12, 3.500E-12, 1.800E-30,	250 3.00,	2.800E-11,	0.00,	0.6
; 3.300E-31, 4.30, 1.600E-12, 0.00, 0 ; 2.700E-11, 390 ; 2.700E-11, 390 ; 2.700E-11, 390 ; 2.700E-11, 390 ; 2.700E-11, 390	2	;;;;;	4.100E-13, 2.700E-12, 1.100E-12, 2.800E-12,	750 200 200 300			
; 2.700E-11, 390 ; 2.700E-11, 390 ; 2.700E-11, 390			-		1.600E-12,	0.00,	0.6
$2 + 0.00 \times 102 + 0.00 \times 10$; $5.590 = 15, -1614$	2 + 0.06*H02 + 0.05*C0	;;;;	2.700E-11, 2.700E-11,	390 390 390			

Why do we want fast chemistry?

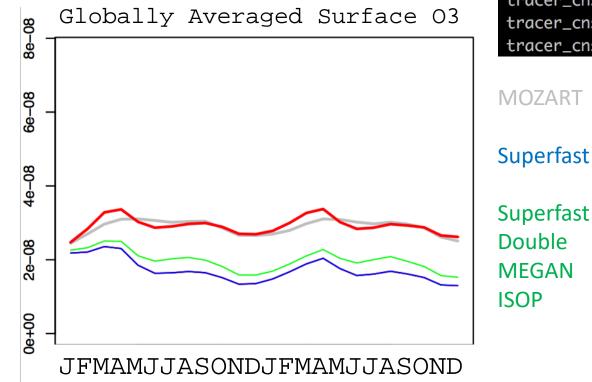
YEAR

Simulations


- MERRA meteorology (1990 2015)
- Year 2000 Cycled Emissions
- Mechanisms:
 - MOZART-4 / SOA
 - Superfast
 - Our Approach: Applying Superfast to MOZART Compset
 - (also Reduced Hydrocarbon, but not talked about here)

Overall Metrics: Model Cost: Model Throughput:	911.05 5.06	pe-hrs/simulated_year simulated_years/day	MOZART
Overall Metrics: Model Cost: Model Throughput:	512.17 9.00	pe-hrs/simulated_year simulated_years/day	Reduced Hydrocarbon
Overall Metrics: Model Cost: Model Throughput:	262.60 17.55	pe-hrs/simulated_year simulated_years/day	Superfast

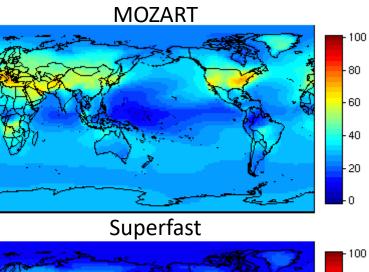
(Cheyenne: Fully Coupled B1850 case: 4,560 pe-hours/yr)

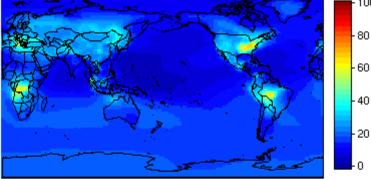

In person meetings are good...

- I had a chance to review the mechanism with Philip yesterday, and we walked through some of the problems he had originally, and we identified a major one:
 - MOZART specifies CH4 as a single value [[CHECK THIS]]]
 - Superfast requires reading in CH4 from a file

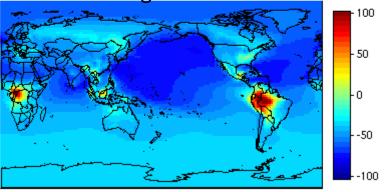
In person meetings are good...

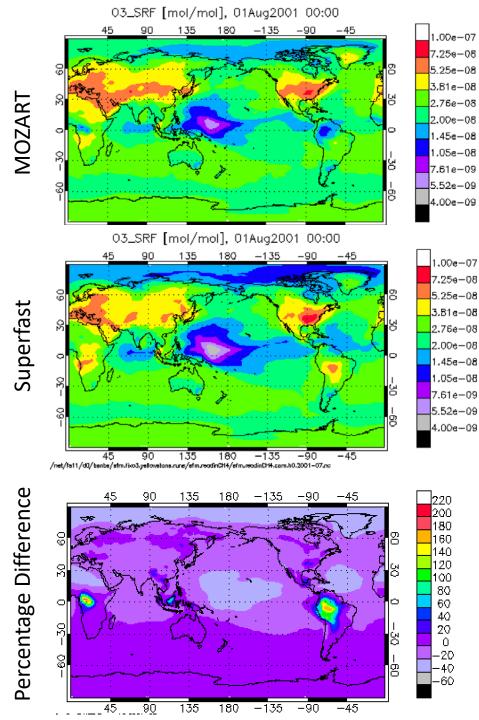
- I had a chance to review the mechanism with Philip yesterday, and we walked through some of the problems he had originally, and we identified a major one:
 - MOZART specifies CH4 as a lower BC
 - Superfast requires reading in CH4 from a file




&chem_surfva co2vmr flbc_cycle_ flbc_file flbc_list flbc_type

tracer_cnst_cycle_yr tracer_cnst_datapath tracer_cnst_file tracer_cnst_filelist tracer_cnst_specifier tracer_cnst_type




Percentage Difference

Results

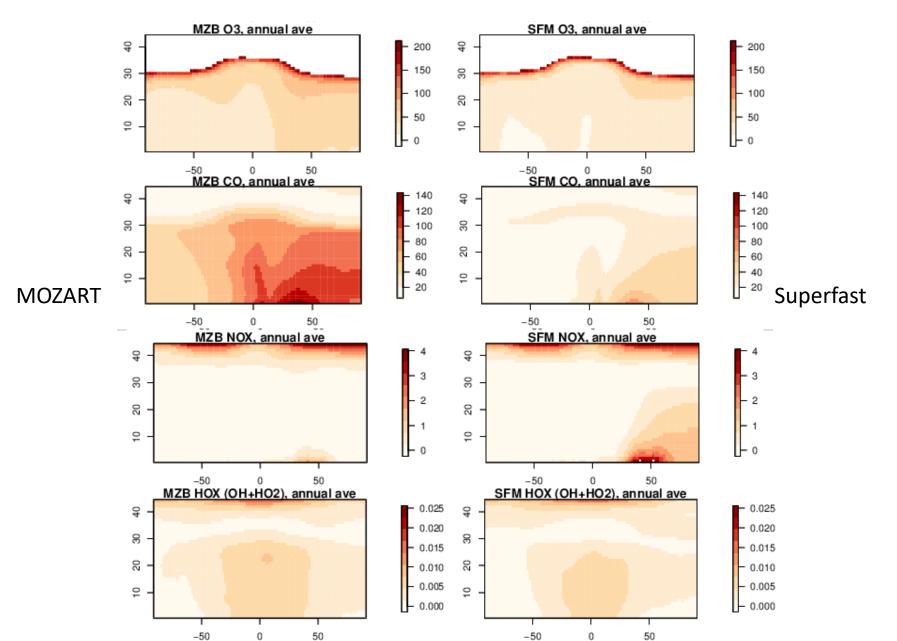
update

- JJA Surface Ozone Average from 1990 – 2015
- The Good:
 - Superfast captures spatial pattern well
- The Bad:
 - Superfast has a much lower mean ozone almost everywhere
 - Too much ozone over regions of intense biogenic and biomass burning emissions

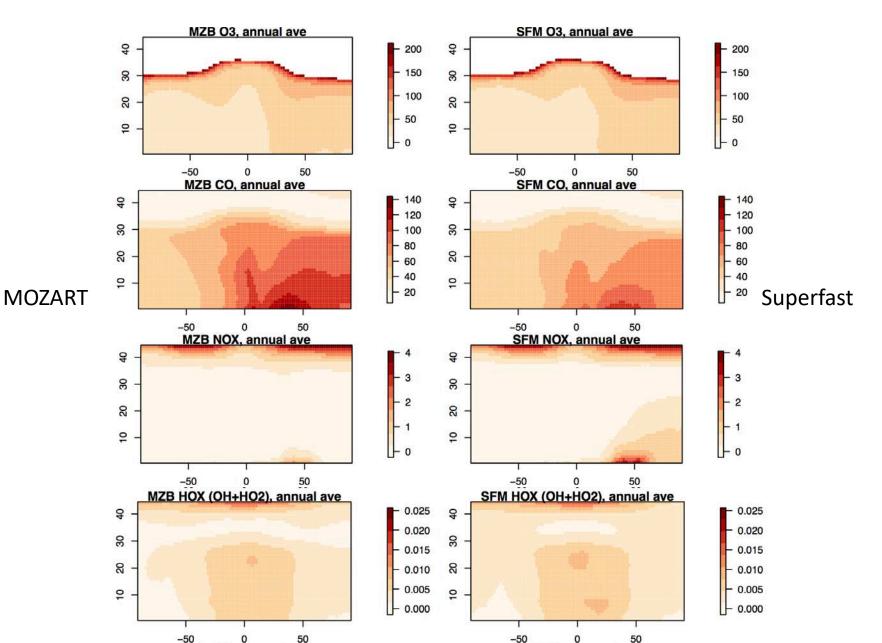
Results

 JJA Surface Ozone Average from 1990 – 2015

• The Good:

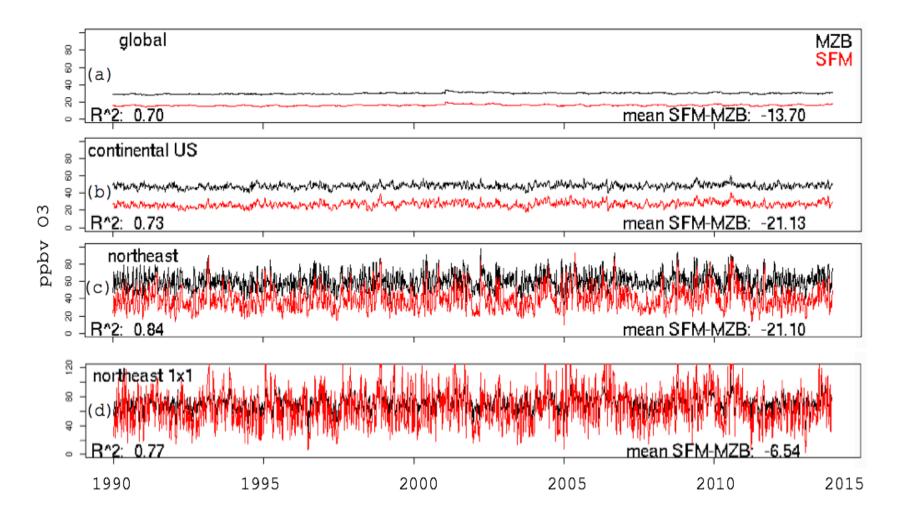

 Superfast captures spatial pattern well

• The Bad:


- Superfast has a much lower mean ozone almost everywhere
- Too much ozone over some regions of intense biogenic and biomass burning emissions

update

Results

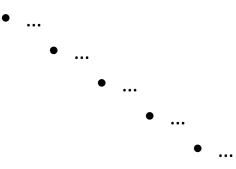


Results

Results JJA Daily Surface Ozone

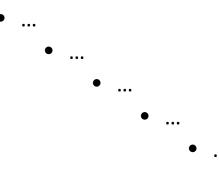
update

Results


	R2
Global	0.7
Continental US	0.73
Western US	o.86
Eastern US	o.8
Midwestern US	0.83
Southeastern US	o.86
Northeastern US	0.84
Midwest 1x1	0.87
Southeast 1x1	0.89
Northeast 1X1	0.77

- Superfast has high correlation with MOZART at all spatial scales
- But also is ~50% too low for most of the globe
- Certain regions (e.g. Northeastern US) show smaller differences
- But maybe for the wrong reasons...

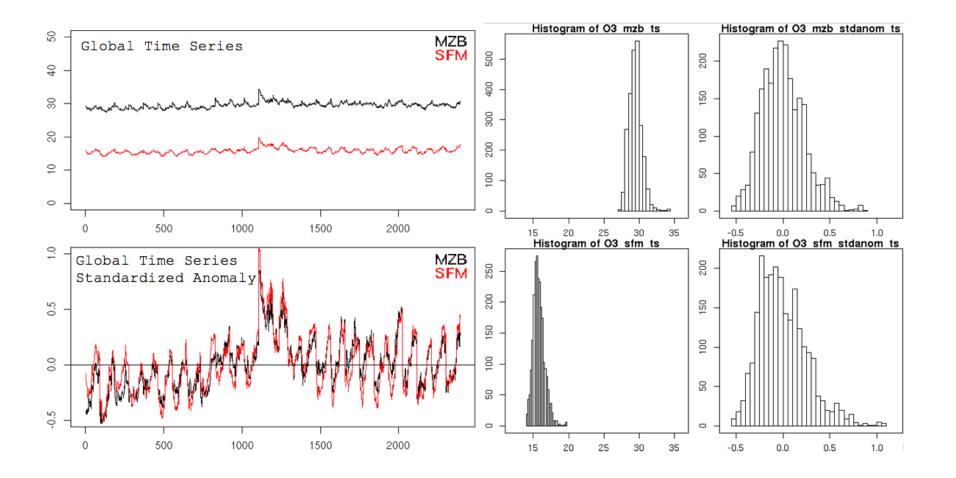
	Global			Continental US			Northeastern US			Northeast 1x1						
	MOZART	Superfast	Δ	Δ (%)	MOZART	Superfast	Δ	Δ (%)	MOZART	Superfast	Δ	Δ (%)	MOZART	Superfast	Δ	Δ (%)
mean	30.0	16.3	-13.7	-46%	48.1	26.9	-21.1	-44%	61.0	39.9	-21.1	- <u>35</u> %	71.9	65.3	-6.5	-9%

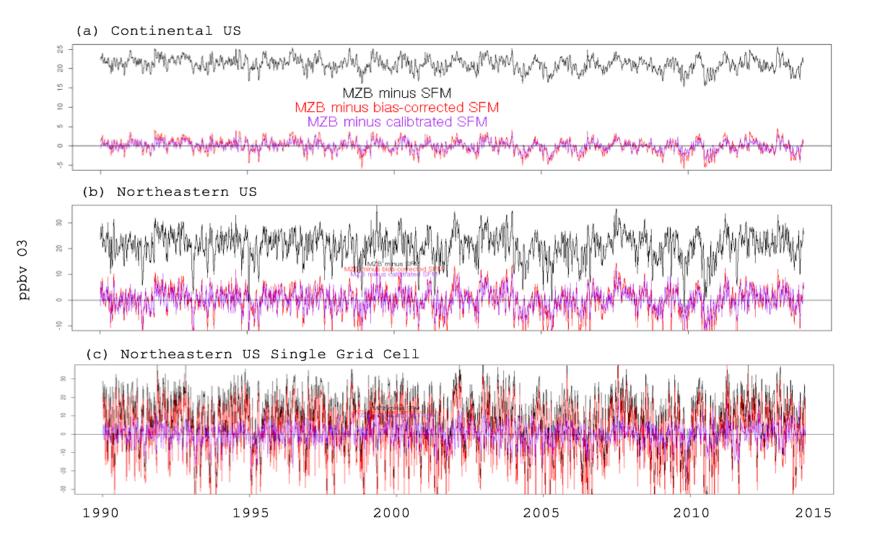

Now What?

- Two ways to go:
 - Take Superfast as a given and use MOZART to "calibrate" its results
 - (next few slides)
 - Fix Superfast
 - Can it be fixed?
 - Fixed for what? It's never going to be perfect, but it might be malleable...
 - ...based on your question...

Now What?

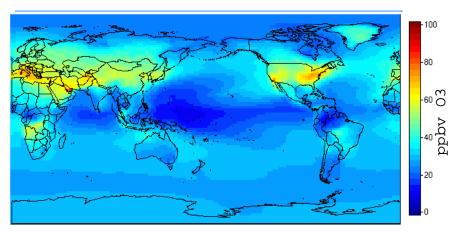
- Two ways to go:
 - Take Superfast as a given and use MOZART to "calibrate" its results
 - (next few slides)
 - Fix Superfast
 - Can it be fixed?
 - Fixed for what? It's never going to be perfect, but it might be malleable...
 - ...based on your question...

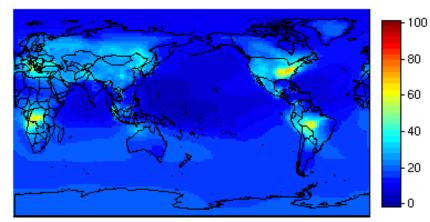


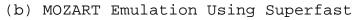

Standardized Anomalies normalize data such that the mean = 0 and the standard deviation = 1 while the shape of the distribution is maintained (Wilks, 2006):

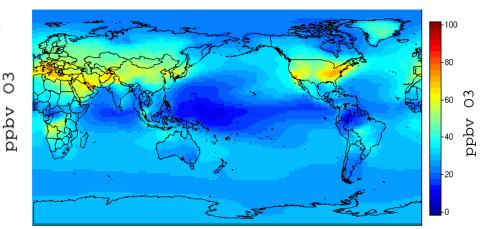
$$A(t) = \frac{x(t) - \bar{x}}{s} \tag{1}$$

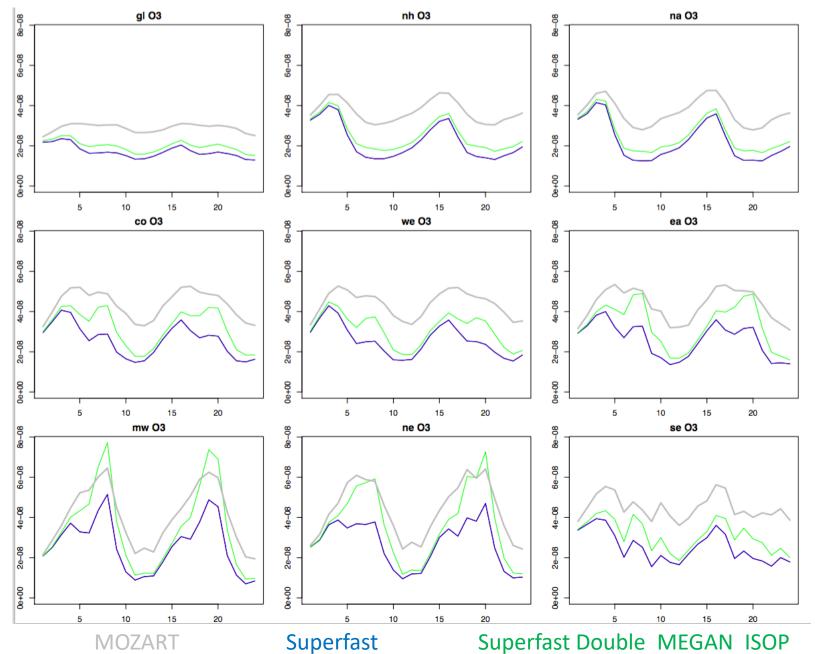
$$A_{MO}(t) = \frac{x_{MO}(t) - \bar{x}_{MO}}{s_{MO}} \qquad A_{SF}(t) = \frac{x_{SF}(t) - \bar{x}_{SF}}{s_{SF}}$$
(2)

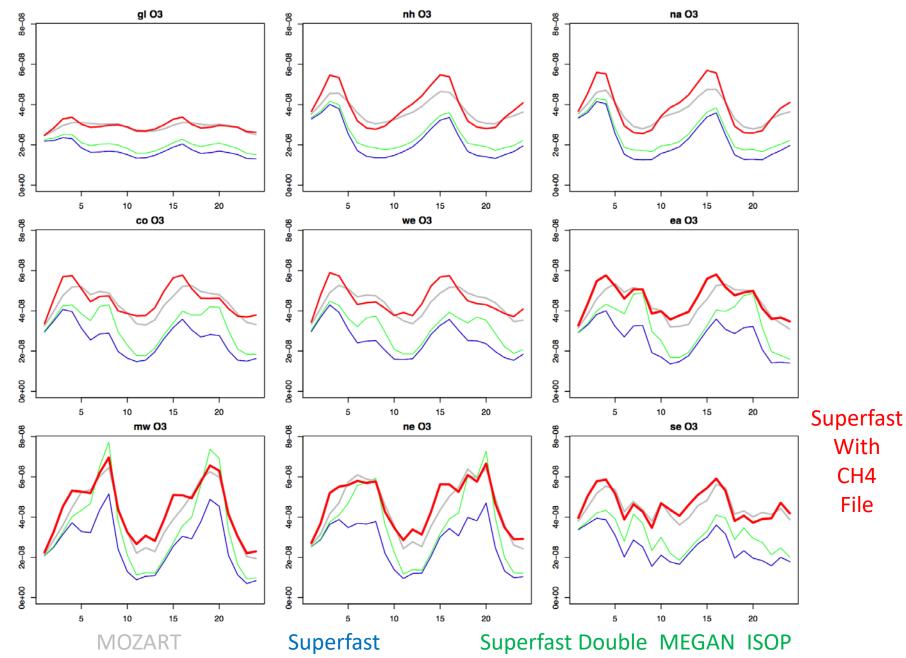

$$x_{MO/SF}(t) = A_{SF}(t) * s_{MO} + \bar{x}_{MO}$$
(3)

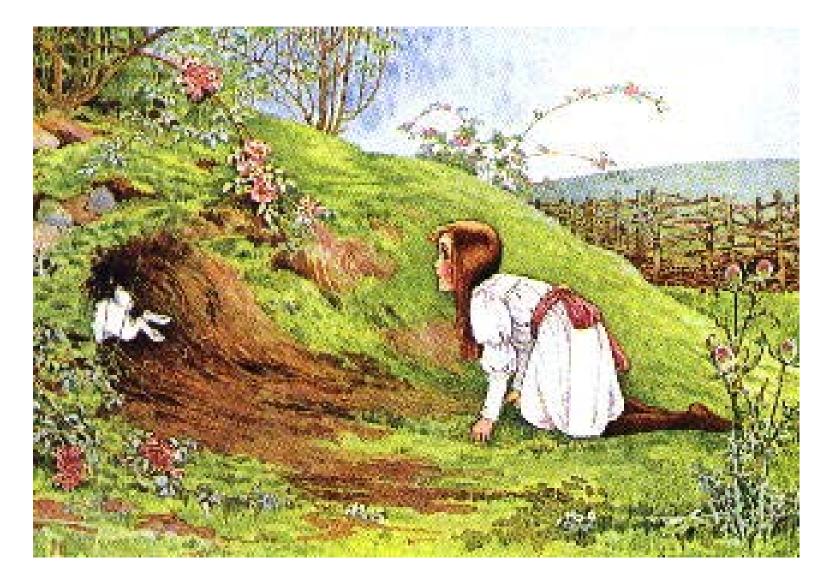


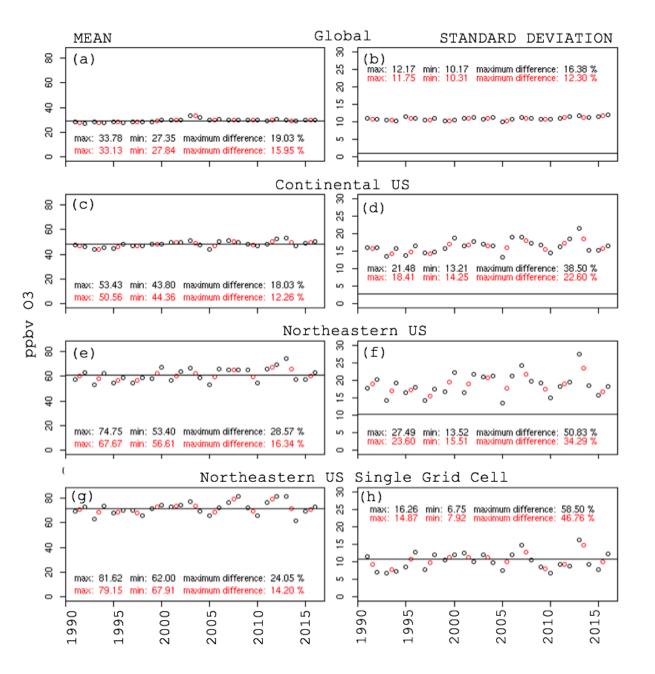

(a) MOZART


Ю


Superfast (b)

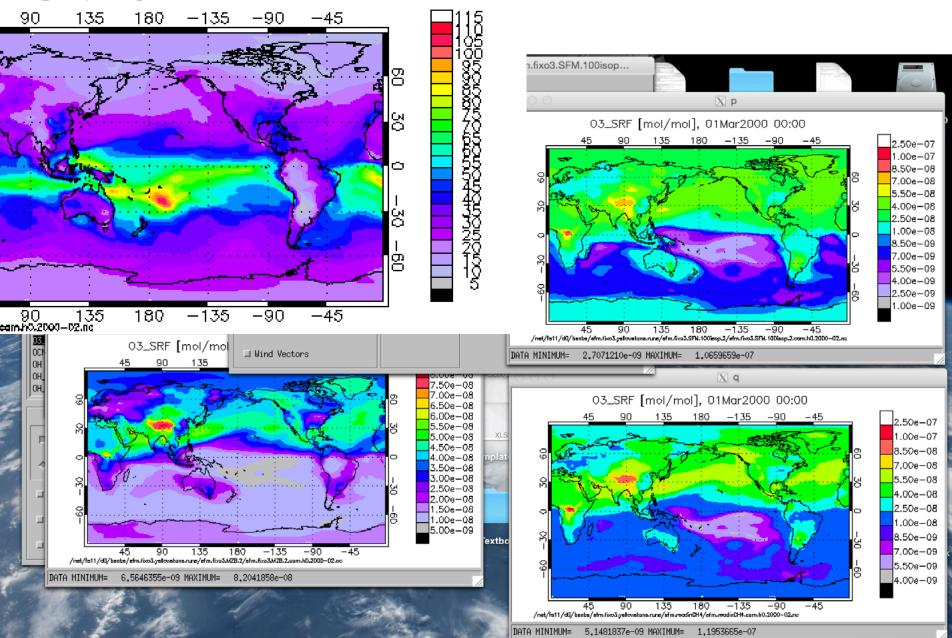



"Can I fix it?" Route


"Can I fix it?" Route

"Can I fix it?" Route

Thank You!



- Are you reading in CH4 from a file, or just the specified value from TROP MOZART
 - (check this \rightarrow where would this be in namelist?)
 - tracer_cnst_cycle_yr = 1855 tracer_cnst_datapath = '/glade/p/cesmdata/cseg/inputdata/atm/cam/chem/methane' 1859_clim_c090605.nc' tracer_cnst_filelist = 'filelist_c090 tracer_cnst_type = 'CYCLICAL'
 - you are not doing this in your MOZART simulation
 - You'll have to look in the code too to make sure it's doing the r the final say if there are defaults written somewhere in the cod
 - Am I double counting NOx
 - 2D emissions
 - 2 different 3D emissions, hardwired into code
 - aircraft (ext_frc)
 - built in mechanism description file

Ext Forcing NO NO2 <- dataset SO2 <- dataset so4_a1 <- dataset so4_a2 <- dataset pom_a1 <- dataset bc_a1 <- dataset num_a1 <- dataset num_a2 <- dataset End Ext Forcing

- lightning (check this too)
- also a 3D emissions coupled with aircraft CO

skr [moi/moi], u i Marzuvu uv:uv

To Do with Superfast (after meeting with PCS)

- Check O3 after CH4 input fix (reading in the Ch4 file instead of just specifying a value, like MOZ does)
- Are you double counting NOx? (it was disturbingly high) Emissions and/or Lightning/Airplane? Talk to Simone and check "Ext Forcing" in chem_mech.in file and compare with MOZART. Make sure this is being done correctly.
- Are the user specified reactions doing what they should be doing? Also Talk to Simone, should they go automatically our should I comb through them and double check?
- Why is CO so low? (or is it, does CH4 fix also fix CO?)
- Are you using superfast BAM or the superfast_llnl_mam3? Would we want to? when you bring things over from superfast and push them into FMOZSOA, what are the things that are likely to get left out? (See previous four bullet points)
- Later, email PCS to see if you can get their "best of superfast" from somewhere in their archives

To Do With Simone

- Show "leak" results
- Look at mechanism...where would it be leaking and why
- Are there ways to "plug" the leak. If I can get it stable we can have a nice sliding scale of complexity which I think would be good to have within CESM / MESM