

Chemistry-Climate Working Group Current Status – Feb/March 2017

Co-chairs: Louisa Emmons (NCAR), Xiaohong Liu (U. Wyoming) Liaison: Simone Tilmes (NCAR) Software Engineer: Francis Vitt (NCAR)

Chemistry-Climate Working Group Session – 02 March 2017

CESM2 Release and other Versions

CESM2 finalized configuration, 1850 runs will follow for scientific release

CMIP6 runs will be performed using WACCM

- TSMLT (troposphere/stratosphere/mesosphere/lower thermosphere), can be run with slight modification in CAMchem, 228 species
- Expanded tropospheric chemistry ("TS1" speciated aromatics, terpenes, updated isoprene oxidation, organic nitrates)
- New SOA-VBS framework
- Prognostic volcanoes
- Closed nitrogen budget
- CMIP6 emissions with updated biomass burning injection heights (for aerosols)
- Single emission files for different sector
- Updated postprocessing (in progress)
- WACCM and CAM-chem compsets will be provided

Code updates (not applied for CMIP6 runs)

- New nitrate scheme
- Interactive fire module

CESM2 Tropospheric Chemistry (TS1)

State of the art tropospheric chemistry

- Provide more detailed representation of SOA precursors (terpenes, aromatics, glyoxal)
- Update isoprene oxidation based on recent research to include OH recycling
- Include specific species that are observed, allowing for more precise model evaluation (benzene, toluene, xylenes, individual terpenes, organic nitrates, glyoxal, etc.)
- Improved treatment of organic nitrates (replace ONIT with more specific nitrates)

Secondary Organic Aerosols

- **1.** SOA scheme updated to include volatility basic set (VBS)
 - Gas (SOG) and aerosol (SOA) species in 5 volatility bins (Hodzic et al., 2016 ACP), implementation based on Shrivastava et al., 2015
 - 1 semi-volatile (SVOC) = 0.6* POM emissions
 - 1 intermediate volatile precursor (IVOC); 0.2 *NMVOC emissions
 - SOAG production different for biomass burning, fossil fuel and biogenic emissions
 - 47 new species, 20% increase in computer time from base description

2. Simplified SOA scheme updated to include volatility basic set (VBS)

- Merge 3 different categories (biomass burning, fossil fuel and biogenic) SOAG into one category. Average Henry's law coefficient for different categories.
- 12 new species, significant reduction in computer time, 5-7% increase from base description.

CESM2 Secondary Organic Aerosols

SOA Trend between 1960 and 2000

SOA Burden

Tropospheric Chemistry Mechanism

Extended development work on tropospheric chemistry

- Improved halogen chemistry (Doug Kinnison)
- Simple chemistry (Ben Brown-Steiner)
- Extended Tagging (Tim Butler)
- Aerosol dry deposition (Mingxuan Wu)

Nitrate and MOSAIC in CAM5

- In order to better treat NO3 aerosols, Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) module [Zaveri et al., 2008] is coupled with MAM7 and MAM4 in CAM model.
- In the version of MAM coupled with MOSAIC, gas-aerosol exchange is treated by MOSAIC. The other processes are handled by MAM

	BC	POM	SOA	SO4	NH4	NO3	Cl	Na	Dust	Са	CO3	total
Accum.	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		11
Aitken			Х	Х	Х	Х	Х	Х				6
Coarse				Х	Х	Х	Х	Х	Х	Х		8
P-carbon	Х	Х										2

Red crosses: new aerosol tracers in MAM4-MOSAIC

Modeled NO3 vs. observation over China

New Aerosol Dry Deposition Scheme

 Current aerosol dry deposition scheme in CAM5 by Zhang et al. (2001) tends to overestimate the particle deposition in the fine mode significantly.

- We introduce a new aerosol dry deposition scheme by Petroff and Zhang (2010) into CAM5.
- The new scheme predicts smaller dry deposition velocity for fine particles in accumulation, Aitken, and primary carbon mode.
- Seasonality of BC concentration at Polar regions is improved.

CESM2 Release and Versions

What compsets do we want for the release?

CESM2 release compsets:

FC2000, FCHIST, FSDCHIST, BTSCHIST standard chemistry FCVBSHIST,

- Do we want a TROP MOZART compset (TS1) with prescribed stratosphere: yes
- Resolutions 0.9x1.25deg, 2degree?

CESM122 Version: CAM4chem and CAM5chem

CCMI Version (CESM111 code base)

- CAM4chem all new science is in CESM2
- Should it be released?

Development will be continued based on CESM2

Development Plans

Refine and test:

- SOA-VBS in CESM2 (including differences for low and high NOx)
- Nitrate aerosol in MAM
- Specified Dynamics Simulations (issues with mass transport), MERRA2
- Interactive fire emissions
- Further improve isoprene, terpenes, aromatics chemistry
- Update chemistry postprocessing
- Move halogen chemistry to CESM2 version

New developments:

- Add polar halogen chemistry
- FAST-J/CLOUD-J / TUV online
- Test next generation dynamical cores: Spectral Element/CSLAM and CESM-MPAS
- Improved MEGAN biogenic emissions (in CLM) and adapt to Ecosystem Demography representation in CLM (Alex Guenther, UCI)
- Brown Carbon and improved dust?
- Interactive methane?