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Lagged regression–a popular analysis tool

Lagged regression: a great tool to establish causality

simple: just one equation: Y (t) = Bτ · X (t − τ) + ε

popular: “lagged regression” in 1500+ articles in J. Clim since 1990

effective: sense of spatial and temporal variations and patterns

. . . but lagged regression has weaknesses under certain conditions.
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Another way–Granger causality

Figure: Sir Clive Granger, economist, Nobel laureate.

A tool for using one time series to forecast another, popular in:

Economics1

Neuroscience2

Detection and attribution studies3,4,5
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Granger causality–just a few extra steps

1) Lagged regression of dependent variable (yt−τ ) on itself (yt)

2) Multivariate lagged regression of independent variable (xt−τ ) and yt−τ
on yt

3) Evaluate additional variance explained by including x

Does adding information about xt increase our ability to predict yt
beyond the information from yt itself?
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Granger causality has some limitations

Only tests X causes Y –could be something else (Z ) causing both

Assumes linearity

Assumes stationarity
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Statistical model

1 Create Y , a red-noise time series with some auto-correlation
coefficient (αy )

Y (t) = αy · Y (t − 1) + (1− α2
y )

1/2ε(t) (1)

2 Create X using Y : X is simply Y lagged by some number of steps
(τ) with added noise, ε

X (t) = Y (t − τ) + ε(t) (2)

3 Perform lagged regressions and Granger causality analysis in both the
“correct” (Y → X ) and “incorrect” (X → Y ) directions

4 Repeat 50,000 times
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Statistical model
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Figure: Example of X created by lagging Y one day.
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Statistical model–The Right Direction

ε
x

α
y

(a) Lag Regression, Y−>X, lag =1
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Figure: Testing hypothesis that Y → X with (left) lagged regression and (right)
Granger causality at 95% confidence. Shading represents percentage of significant
results.
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(b) Granger Causality, Y−>X, lag 1
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Figure: Testing hypothesis that Y → X with (left) lagged regression and (right)
Granger causality at 95% confidence. Shading represents percentage of significant
results.
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Statistical model–The Wrong Direction

ε
x

α
y

(a) Lag Regresion, X−>Y, lag =1

 

 

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%

0

10

20

30

40

50

60

70

80

90

100

Figure: Testing hypothesis that X → Y with (left) lagged regression and (right)
Granger causality at 95% confidence. Shading represents percentage of significant
results.
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(b) Granger Causality, X−>Y, lag =1
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Figure: Testing hypothesis that X → Y with (left) lagged regression and (right)
Granger causality at 95% confidence. Shading represents percentage of significant
results.
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A Real World Example

We think about . . .

ENSO → T

but what about

T → ENSO
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Observations–The Right Direction
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Figure: Testing the hypothesis that ENSO causes changes in surface temperature
with (left) lagged regression and (right) Granger causality at 95% confidence.
Red indicates a significant lagged relationship identified at up to 7 months.
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Figure: Testing the hypothesis that surface temperature causes changes in ENSO
with (left) lagged regression and (right) Granger causality at 95% confidence.
Red indicates a significant lagged relationship identified at up to 7 months.
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Granger causality can improve your analysis:

Ensures significant results are not due to memory in data

Similar to lag regression in the “right” direction . . .
but will fail in the “wrong” direction

Granger causality–more robust results for a little extra work!
Try it out!
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BACKUP SLIDES
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Statistical model–The Right Direction
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(a) Lag Regression, Y−>X, lag =3

 

 

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%
0

10

20

30

40

50

60

70

80

90

100

ε
x

α
y

(b) Granger Causality, Y−>X, lag 3
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Figure: Testing hypothesis that Y → X with (left) lagged regression and (right)
Granger causality at 95% confidence. Shading represents percentage of significant
results (e.g., false positives).
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Statistical model–The Wrong Direction

ε
x

α
y

(a) Lag Regresion, X−>Y, lag =3
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(b) Granger Causality, X−>Y, lag =3
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Figure: Testing hypothesis that X → Y with (left) lagged regression and (right)
Granger causality at 95% confidence. Shading represents percentage of significant
results.
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Statistical model

Lag
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(a) Lag Regresion, X−>Y, ε
x
 =3.5
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(b) Granger Causality, X−>Y, ε
x
 =3.5
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Figure: Percentage of significant results as a function of lag for (left) lagged
regression and (right) Granger causality.
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Statistical model
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(a) Lag Regresion, X−>Y, ε
x
 =0.25
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(b) Granger Causality, X−>Y, ε
x
 =0.25
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Figure: Percentage of significant results as a function of lag for (left) lagged
regression and (right) Granger causality.
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