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Lagged regression—a popular analysis tool

Lagged regression: a great tool to establish causality
simple: just one equation: Y(t) = B; - X(t —7) + ¢
popular: “lagged regression” in 1500+ articles in J. Clim since 1990
effective: sense of spatial and temporal variations and patterns

... but lagged regression has weaknesses under certain conditions.
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Another way—Granger causality

Figure: Sir Clive Granger, economist, Nobel laureate.

A tool for using one time series to forecast another, popular in:

Economics!

Neuroscience?

Detection and attribution studies3*°
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Granger causality—just a few extra steps

1) Lagged regression of dependent variable (y;—,) on itself (y;)

2) Multivariate lagged regression of independent variable (x¢—-) and y;_,
on yi

3) Evaluate additional variance explained by including x

Does adding information about x; increase our ability to predict y;
beyond the information from y; itself?
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Granger causality has some limitations

Only tests X causes Y—could be something else (Z) causing both
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Granger causality has some limitations

Only tests X causes Y—could be something else (Z) causing both

Assumes linearity

Assumes stationarity
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Statistical model

@ Create Y, a red-noise time series with some auto-correlation
coefficient ()

Y(t)=ay - Y(t—1)+ (1 —a2)?(t) (1)
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Statistical model

@ Create Y, a red-noise time series with some auto-correlation
coefficient ()

Y(t)=ay - Y(t—1)+ (1 —a2)?(t) (1)

@ Create X using Y: X is simply Y lagged by some number of steps
(7) with added noise, ¢

X(t)=Y(t—7)+€(t) (2)

© Perform lagged regressions and Granger causality analysis in both the
“correct” (Y — X) and “incorrect” (X — Y) directions

@ Repeat 50,000 times
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Statistical model

a =085¢ =025

- <

Value

Figure: Example of X created by lagging Y one day.
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Statistical model-The Right Direction

(a) Lag Regression, Y->X, lag =1

Figure: Testing hypothesis that Y — X with (left) lagged regression and (right)
Granger causality at 95% confidence. Shading represents percentage of significant
results.
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Statistical model-The Right Direction

(a) Lag Regression, Y->X, lag =1 (b) Granger Causality, Y->X, lag 1

Figure: Testing hypothesis that Y — X with (left) lagged regression and (right)
Granger causality at 95% confidence. Shading represents percentage of significant
results.
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Statistical model-The Wrong Direction

(a) Lag Regresion, X->Y, lag =1
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Figure: Testing hypothesis that X — Y with (left) lagged regression and (right)
Granger causality at 95% confidence. Shading represents percentage of significant
results.
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Statistical model-The Wrong Direction

(a) Lag Regresion, X->Y, lag =1 (b) Granger Causality, X->Y, lag =1
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Figure: Testing hypothesis that X — Y with (left) lagged regression and (right)
Granger causality at 95% confidence. Shading represents percentage of significant
results.
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A Real World Example

We think about ...
ENSO — T
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A Real World Example

We think about ...
ENSO — T

but what about

T — ENSO
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Observations—The Right Direction
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Figure: Testing the hypothesis that ENSO causes changes in surface temperature
with (left) lagged regression and (right) Granger causality at 95% confidence.
Red indicates a significant lagged relationship identified at up to 7 months.
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Observations—The Wrong Direction

Lag regression, T-> ENSO, lag 7

Granger causality, T-> ENSO, lag 7
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Figure: Testing the hypothesis that surface temperature causes changes in ENSO
with (left) lagged regression and (right) Granger causality at 95% confidence.
Red indicates a significant lagged relationship identified at up to 7 months.
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Granger causality can improve your analysis:

Ensures significant results are not due to memory in data
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Granger causality can improve your analysis:

Ensures significant results are not due to memory in data

Similar to lag regression in the “right” direction ...
but will fail in the “wrong” direction

Granger causality—more robust results for a little extra work!
Try it out!
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BACKUP SLIDES




Statistical model-The Right Direction

(a) Lag Regression, Y->X, lag =3 (b) Granger Causality, Y->X, lag 3

Figure: Testing hypothesis that Y — X with (left) lagged regression and (right)
Granger causality at 95% confidence. Shading represents percentage of significant
results (e.g., false positives).
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Statistical model-The Wrong Direction

(a) Lag Regresion, X—>Y, lag =3 (b) Granger Causality, X—>Y, lag =3
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Figure: Testing hypothesis that X — Y with (left) lagged regression and (right)
Granger causality at 95% confidence. Shading represents percentage of significant
results.
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Statistical model

(a) Lag Regresion, X—>Y,¢ =3.5 (b) Granger Causality, X->Y.e, =3.5
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Figure: Percentage of significant results as a function of lag for (left) lagged
regression and (right) Granger causality.
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Statistical model

(a) Lag Regresion, X->Y, ¢ =0.25 (b) Granger Causality, X->Y.e =0.25
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Figure: Percentage of significant results as a function of lag for (left) lagged
regression and (right) Granger causality.
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