Observational constraints on the contribution of internal variability to recent climate trends

Karen McKinnon with Andy Poppick, Etienne Dunn-Sigouin, and Clara Deser

> CVCWG meeting 2 March 2017 Boulder, CO

Observed DJF temperature trend, 1966-2015

Observed DJF temperature trend, 1966-2015

Observed DJF temperature trend, 1966-2015

Large Ensemble shows influence of internal variability

Distribution of trends from white noise

Variable 50-year trends from high-frequency noise

also see Thompson et al., (2015), J Clim

Variable 50-year trends from high-frequency noise

γ

also see Thompson et al., (2015), J Clim

Observations tend to be less variable than LENS

Stippling: not significant

Observations tend to be more autocorrelated than LENS

Approach: create a synthetic ensemble

Approach: create a synthetic ensemble

- use a non-parametric method: **block bootstrap**
- fit a linear model to the observations
- resample the full spatial field of the residuals using a block size of two years
- add resampled residuals back to original trend, and recalculate the trend

Approach: create a synthetic ensemble

- use a non-parametric method: **block bootstrap**
- fit a linear model to the observations
- resample the full spatial field of the residuals using a block size of two years
- add resampled residuals back to original trend, and recalculate the trend

Assumption: 2 year blocks of DJF temperature are interchangeable after accounting for the trend

Approach: create a synthetic ensemble

- use a non-parametric method: **block bootstrap**
- fit a linear model to the observations
- resample the full spatial field of the residuals using a block size of two years
- add resampled residuals back to original trend, and recalculate the trend

Assumption: 2 year blocks of DJF temperature are interchangeable after accounting for the trend

Evaluation: repeat exercise treating all members of the Large Ensemble as the observations.

Validation: can reproduce LENS variability

average across domain: 1.0

LENS overestimates trend uncertainty

Stippling: not significant

Observational Large Ensemble =

synthetic ensemble + ensemble mean from LENS

Take home points

Observed and modeled trends are a combination of natural variability and response to forcing

Variability in 'long-term' (e.g. 50 year) DJF temperature trends over North America primarily due to short-timescale variability

LENS tends to overestimate this variability, so overestimates the contribution of internal variability to trend uncertainty

By applying block bootstrapping to the observational record, we can make an 'Observational Large Ensemble' that has a covariance structure similar to the real world

extras

Lag-1 autocorrelation coefficient, ϕ