

CLM5!

David Lawrence and the Land Model Working Group

What is new or improved in CLM5?

How did we ever get to the stage of a finalized model? *

Is the model any good?

What's next: CTSM / CLM6?

* Finalized should be in " "s

INSTRACT OF LAND

A LOT!

More than 50 scientists and software engineers from 15 different institutions involved in development of CLM5

Conservation and the server of the

- Rosie Fisher Keith Oleson Sean Swenson Will Wieder Charlie Koven Danica Lombardozzi Ben Sanderson
- Erik Kluzek Bill Sacks Peter Lawrence Yaqiong Lu Fang Li Daniel Kennedy

(Constant and and and

Hydrology:	dry surface layer, variable soil depth with deeper (8.5m) max depth, revised GW and canopy interception, adaptive time stepping, increased soil layer resolution						
Snow:	canopy snow, wind effects, firn model (12 layers), glacier MEC, fresh snow dens.						
Rivers:	$MOSART(hillslope \rightarrow tributary \rightarrow main channel)$						
Nitrogen:	flexible leaf C:N ratio, leaf N optimization, C cost for N (FUN)						
Vegetation:	plant hydraulics and hydraulic redistr, deep roots tropical trees, Medlyn photosynth, Ecosystem Demography (FATES), prognostic roots, ozone damage						
Fire:	updates, trace gas and aerosol emissions						
Crops:	global crop model with transient irrigation and fertilization (9 crop types), grain product pool, revised irrigation scheme						
Carbon:	revisions to carbon allocation and soil carbon decomposition						
Land cover/use:	dynamic landunits, updated PFT-distribution, wood harvest by mass, shifting cultivation						
lsotopes:	carbon and water isotope enabled	Change					

CLM5 default configuration CLM5 optional feature

2nd CLM Tutorial **September 12-16, 2016**

- Lectures on underlying model physics, hydrology, biogeochemistry, ecology, etc
- Practical sessions about how to run, modify, and analyze CLM simulations
- Presented science and software of CLM5 / CESM2
- More than 85 applicants, 46 accepted plus 8-10 auditors
- All tutorial material including lectures and practical sessions http://www.cesm.ucar.edu/events/tutorials/2016-clm/

CLM versions and configurations

Constant Constants

- **CLM2** May 2002 (CCSM2)
- **CLM3** June 2004 (CCSM3)
- **CLM3.5** June 2007 (CCSM Distinguished Achievement Award to LMWG)
- **CLM4** June 2010 (CCSM4 and CESM1; CMIP5)
 - carbon-nitrogen cycling
 - prognostic vegetation phenology, LAI, and height
 - transient land cover change
 - urban model
 - updated hydrology including groundwater
 - updated snow incl. dust and black carbon dep.
 - organic soil + deep ground column (permafrost)

CLM versions and configurations

Constant Constants

CLM4.5 June 2013 (CESM1.2)

- vertically-resolved soil BGC and revised nitrification-denitrification, N-fixation
- cold region hydrology updates incl perched water table, VIC option
- snow cover fraction updates
- revised canopy radiation scheme
- co-limitation and temperature acclimation on photosynthesis
- updated lake model
- prognostic wetlands and flooding (optional)
- updated fire model with natural and anthropogenic triggers and suppression
- BVOC updated to MEGAN2.1
- CH₄ emissions

International LAnd Model Benchmarking (ILAMB) project

scores for RMSE, interannual variability, pattern correlation, variable-to-variable comparisons, +

-

(Constant of the server of S

CLM5 default configuration							
lsotopes:	carbon and water isotope enabled	Change					
Land cover/use:	dynamic landunits, updated PFT-distribution, wood harvest by mass, shifting cultivation						
Carbon:	revisions to carbon allocation and soil carbon decomposition						
Crops:	global crop model with transient irrigation and fertilization (9 crop types), grain product pool, revised irrigation scheme						
Fire:	updates, trace gas and aerosol emissions						
Vegetation:	plant hydraulics and hydraulic redistr, deep roots tropical trees, Medlyn photosynth, Ecosystem Demography (FATES), prognostic roots, ozone damage						
Nitrogen:	flexible leaf C:N ratio, leaf N optimization, C cost for N (FUN)						
Rivers:	$MOSART(hillslope \rightarrow tributary \rightarrow main channel)$						
Snow:	canopy snow, wind effects, firn model (12 layers), glacier MEC, fresh snow dens.						
Hydrology:	dry surface layer, variable soil depth with deeper (8.5m) max depth, revised GW and canopy interception, adaptive time stepping, increased soil layer resolution						

CLM5 optional feature

How did we get here?

Constant of the second

Hydrology:	dry surf. layer, var. soil depth w/ deeper (8.5m) max soil, revised GW and canopy interc				
Snow:	canopy snow updates, wind effects, firn model (12 layers), glacier MEC, fresh snow dens.				
Rivers:	$MOSART(hillslope \rightarrow tributary \rightarrow main channel)$				
Nitrogen:	flexible leaf C:N ratio, leaf N optimization, C cost for N (FUN)				
Carbon:	revisions to carbon allocation and decomposition				
Fire:	updates, trace gas and aerosol emissions				
Vegetation:	plant hydraulics, deep tropical tree rooting,				
	Ecosystem Demography (FATES), prognostic roots, ozone damage				
Crops:	crop model with transient irrig. and fert. (8 crop types), grain prod. pool				
Land cover/use:	dynamic landunits, revised PFT-distribution, wood harvest by mass, shifting cultivation				
lsotopes:	carbon and water isotope enabled				

Implemented CLM5 default configuration CLM5 optional feature Not yet implemented

How did we get here?

CORPAGE COLSERSE.

How did we get here?

CORPAGE COLSERSE.

July to December, 2016

- Integrating new features
- Fixing problems
- Dealing with edge cases
- Assembling datasets
- CLM Tutorial
- Multiple false starts, trials, and tribulations with optimized parameter calibration

CLM Annual Max LAI (from some run circa Jan 10)

<u>CLM Safety Tip:</u> Once a PFT in a grid cell dies, it **stays** dead for the remainder of simulation clm5r218_2deg_optcalparamsv5_2000_55-59.nc: ANN Max TLAI (m² m⁻²)

→ Reworked initialization strategy, with more initial C/N in veg and soil

Helped, but majority of issue seems to be with parameters

Survival Probability

CLM5 bias in annual mean LAI

CLM4.5 bias in annual mean LAI

CLM5 Daily mean GPP

Is CLM5 in improvement over CLM4.5?

Conservation and

- Mechanistically and capability-wise, definitely yes
- Model skill against observations?

TBD, some fields like GPP, LH, LAI, river discharge, albedo, fire either not degraded or improved

Carbon flux interannual variability lower

- Some more details in talks today and tomorrow
- Will take some time to be able to fully characterize and understand the model

Annual river discharge

CLM5 Soy

FAO Rice

CLM5 Rice

CLM5 SprIng Wheat

- Documentation
 - JAMES papers (CESM Special Collection)
 - Technical Description
 - User's guide

- Land-oriented CMIP6 activities
 - Rationalize CLM output streams
 - LUMIP, LS3MIP land-only runs

- FATES
- Multilayer canopy
- Hillslope hydrology

Can we move beyond "Shantytown" syndrome?

... and the proliferation of models?

... and continue efforts to modularize and modernize the code and support tools?

The Community Terrestrial Systems Model a model for research and prediction in climate, weather, water, and ecosystems

CLM (CGD)

Noah-MP, WRF-Hydro (RAL)

Unify land modeling across NCAR

- More efficient use of NCAR and community resources
- Accelerate advances
- Increase flexibility and robustness of process representation, spatial architecture, and numerical solution (SUMMA concepts)
- Enable more hypothesis-driven science
- Integrate and expand land modeling research community
- Expand funding opportunities?

Andrew Slater, 1971-2016

Development targets for CLM5

Conservation and

• Land cover and land use change

Global / transient crop capability with irrigation, fertilization, and cultivation of crops (land management) as default for historical and projection runs

More realistic land cover change impact on water and energy fluxes

• Carbon and nutrient cycles

Improved 20thC land carbon stocks and carbon stock trends

Address ecological stones thrown at CLM4 (plants don't get N for free , leaf N isn't static, photosynthetic capacity should respond to environment, stomatal conductance not linked to N-limitation)

• Hydrology

Hydrology representation closer to state-of-art hydrology understanding Increase utility for use in water resource and water-carbon interaction research

• Land-atmosphere chemistry coupling

Enhanced interactions, fire emissions, ozone damage to plants, CH₄ emissions

 Ecosystem Demography model – future biogeochemical core of CLM Functional CLM5(ED) for use in studies of biome boundaries, trait filtering, etc CESM2 coupled runs with CLM(ED) within CMIP6 timeframe; will not be CESM2 default configuration

Improvements to fresh snow density and

snow compaction

- Improved snow densities
- Cooler soil temperatures
- Eliminates spurious Antarctica snow melt

To do list: Software development

- Integrate "loose-end" projects
 - Carbon / nitrogen conservation for dynamic landunits
 - Plant hydraulics
 - Dynamic roots
 - Water isotopes (BeTR)
 - Winter wheat
 - Crop tilling
 - Dynamic local river flood stage
 - Permafrost excess ice
 - Switch for PFTs on own column
 - Prescribed soil moisture code

- Code cleanup
 - Rapid code integration for science has lead to accumulation of lots of "Technical Debt"
- Performance
 - CLM5BGC-crop costs ~5-10x over CLM4CN
- Model output rationalization
 - Over 550 fields archived by default

PHS - Recent Simulations

Using tower
simulation analysis
to understand and
optimize
parameterization
for drought
response

Slide courtesy Daniel Kennedy

LMWG summary

- Finalizing CLM5
 - Integrate Plant Hydrodynamics and a few small code changes onto trunk
 - Parameter optimization (likely that LMWG will provide several parameter sets between now and Sept I as process is refined and repeated)
 - Ingest LUMIP/CMIP6 land-cover and land-use change dataset into CLM landuse timeseries file
 - Water isotopes
- Several presentations on simpler land / boundary layer models to allow for more controlled experiments in land impacts on the atmosphere
- ILAMB tutorial was well-attend, ILAMB will be integrated into CESM workflow soon

Plant Hydraulic Stress

- Simple model to resolve water transport through the Soil Plant Atmosphere Continuum
- Water supply modeled via simple hydraulic framework
- Loss relative to unstressed transpiration modeled based on leaf-level water potential
- Water stress function used to calculate conductance, photosynthesis, and respiration

To do list: Scientific development Update surface dataset tool to ingest CMIP6 land use dataset

New History

Hyde 3.2 based Landsat F/NF Multiple crop types (5) Multiple pasture types (2) Updated Forest Cover/B Updated Wood harvest Updated Shifting Cultivation Extended time domain (850-2015)

New Mgt. Layers

<u>Agriculture</u>

Fraction of cropland irrigated Fraction of cropland flooded Fraction of cropland fertilized Fertilizer application rates Fraction of cropland tilled Fraction of cropland for biofuels *Crop rotations* <u>Wood Harvest</u>

Fraction used for industrial products Fraction used for commercial biofuels Fraction used for fuelwood

New Future Scenarios

Six futures, SSP-based

New Resolution

0.25°

New Transition Matrix

	Pri F	Pri NF	Sec F	Sec NF	C3 Ann	C4 Ann	C3 per	C4 per	C3 N-Fix	Pasture	Rangeland	Urban
Pri F												
Pri NF												
Sec F												
Sec NF												
C3 Ann												
C4 Ann												
C3 Per												
C4 Per												
C3 N-Fix												
Pasture												
Rangela nd												
Urban												

~ 50x information content of CMIP5!

Why the systematic drop?

- Always a drop, but larger in this run
- Climate differences not uniform
- Forcing height
- Possibly a correlation with VPD bias in CESM
- Higher Ball-Berry or Medlyn stom conductance seem to partially alleviate

Why the systematic drop?

- Always a drop, but larger after parameter calibration
- Forcing height issues in CLM runs?
- Climate differences (T, P) generally not uniform, spec humidity more systematic lower
- Higher Ball-Berry slope params or Medlyn stom conductance seem to partially alleviate

Rogers et al., 2017

CLM5SP versus CLM4.5SP

