

Quantifying Impacts of Land-use and Land Cover Change in a Changing Climate at the Regional Scale using an Integrated Earth System Modeling Approach

Maoyi Huang¹, Guoyong Leng¹, Yannick Le Page^{1,2}, Xuesong Zhang¹, Ian Kraucunas¹

on behalf of

The Platform for Regional Integrated Modeling and Analysis (PRIMA) The Integrated Multi-scale, Multi-sector Modeling (IM³) Scientific Focus Area

¹Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory ²Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa Department Tapada da Ajuda

Background and Motivation

- Recent efforts have resulted in several new capabilities for representing LULCC ESMs based IAM projections;
- Considerable uncertainties remain surrounding LULCC downscaling approaches and the overall interdependencies between LULCC and other systems and sectors;
- We aim to improve our understanding of the complex interactions between LULCC and other human and natural systems by systematically exploring feedbacks between terrestrial processes and other components.

Platform for Regional Integrated Modeling and Analysis

Proudly Operated by Battelle Since 1965

Exploring High-resolution Water Cycle Changes Using a Regional Earth System Model

 Regional Earth System Model (RESM) built for dynamic downscaling by coupling WRF, CLM, and ROMS

- RESM was applied over the conterminous United States at 20-km resolution using largescale conditions from CESM:
 - One historical simulation
 - Two future climate projections (RCP4.5 and RCP8.5)

Ke Y., Leung L.R. et al. , GMD, 2012 Gao Y., Leung L.R. et al., GRL, 2014

- A robust spring drying signal in the Southwest was identified across the CMIP5 archive, suggesting challenges for water resources management and agriculture over the region in the future
- The RESM simulations stand out in their ability to capture regional details and water cycle extremes

The Global Change Assessment Model (GCAM)

- GCAM is a global market equilibrium integrated assessment model that includes representations of the energy, economic, land-use, water, and climate systems;
- Recent efforts have focused on increasing the spatial and temporal resolution of GCAM, and on improving representations of climate IAV processes and feedbacks;
 - GCAM is now a freely available community model http://www.globalchange.umd.edu/ gcam/gcam-community/

Downscale LULCC from GCAM-USA

West et al. (2014); Le Page et al. (2016)

GCAM represents the world terrestrial biosphere into 283 spatial units, the result of the intersection of two spatial scales

Improving the Performance of CLM in Representing Regional Agro-ecosystems and Hydrology

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

- Incorporated groundwater pumping, and fertilization schemes into the Community Land Model (CLM);
- Calibrated CLM simulated irrigation amount and crop yields against countylevel agricultural census;
- Demonstrated that irrigation, groundwater pumping, and crop management greatly alter regional water and carbon dynamics, and can influence local and regional climate;
- These tools and results are ready for integration with IAMs in a regional context

Leng G., et al. JGR, 2013; JHM, 2014

County-level irrigation amount

Quantify bioenergy crop yields and assessing its environmental impacts

40N

30N

Change in land area covered by plant functional types 2005-2095

Proudly Operated by Battelle Since 1965

9

Benefit of climate mitigation might be damped by LULCC at the local to regional scales

Integrated Multi-scale CLIMATE WATER Modeling POPULATION LAND ENERGY

What's next?

Multi-sector

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Scientific Focus Area

Physical Earth Systems

Human Systems

Cross-Sector Interactions

Higher Resolution

Cross-Scale Interactions

More Aggregated

Land Use and Land Cover Change (LULCC) Research Thrust Area

Questions:

- How might socio-economic and biophysical factors drive regional LULCC under future climate change, adaptation, and mitigation scenarios?
- Will projected LULCC lead to regional or seasonal water deficits?
- Will LULCC-induced perturbations to surface properties influence regional climate?

Activities:

- Evaluate and enhance LULCC downscaling algorithms (using input from GCAM and population dynamics thrust area)
- Quantify impacts of LULCC on water availability, carbon cycle dynamics, and regional climate
- Provide new LULCC scenarios for other projects/activities

Proudly Operated by Battelle Since 1965

Acknowledgement

The Integrated Multi-scale, Multi-sector Modeling (IM³) Scientific Focus Area through DOE Office of Science Integrated Assessment Research Program